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ABSTRACT 

This r epor t  is tutor ia l  in nature  and 
basic to the vibration of mechanical  sys t ems  

deals  p r imar i ly  with concepts 
and the i r  equivalent e lec t r ica l  

analogies. Although both mechanical  impedance and operat ional  amplif ier  
c i rcui ts  a r e  considered, emphas is  is given to passive mobility c i rcu i t s  fo r  
the vibration of distributed e las t ic  s t ruc tu res .  

The s ingle-degree-of-freedom s y s t e m  is  used to  i l lus t ra te  and in t e r -  
relate many of the concepts and definitions common to mechanical  sys t ems  
and e lec t r ica l  c i rcui ts .  The mobility concept is  then extended to include dis - 
tributed physical sys t ems  descr ibed  mathematical ly  a s  par t ia l  differential  
equations. These result ing analogs a r e  e lectr ical ly  equivalent to finite - 
difference fo rms  of the par t ia l  differential  equations and can be  used di-  
rectly to synthesize complete e lec t r ica l  models  of physical  sys t ems .  Dif- 
ference mobility analogs a r e  shown fo r  the vibration of the s imple  beam,  the 
Timoshenko beam,  a curved beam,  a rectangular  s h e a r  panel, and a r e c -  
tangular plate.  Similar  analogs a r e  shown fo r  problems typical to  heat  
t ransfer  and fluid flow. 
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ELECTRICAL ANALOGIES AND THE VIBRATION O F  LINEAR 

MECHANICAL SYSTEMS 

INTRODUCTION 

The use of e lec t r ica i  anaiogies to s o l v e  probleiris c e m ~ c n  te strl-lc- 

t u r e s  and s t ruc tu ra l  dynamics is not a new concept. 

papers  dealing with these  topics were  writ ten in  1933 and 1934 by Fi res tone  

(Reference 7 )  and Bush (Reference 5 )  respectively.  

r a the r  complete review of the l i t e r a tu re ,  Higgins (Reference 10) provides 

a h is tor ica l  perspec t ive  of electroanalogic methods. 

mechanical vibration texts  a s  F r e b e r g  (Chapter 10 of Reference 8) and 

Thomson (Chapter 8 of Reference 18) mention e lec t r ica l  analogies although 

such discussions a r e  introductory in nature .  More  complete  presentat ions 

of s t ruc tu ra l  analogies a r e  given by Barnoski (Reference 1) and MacNeal 

(Reference 13). 

Two of the e a r l i e s t  

By a concise  and 

Recent authors  of 

Although e lec t r ica l  analogies a r e  discussed h e r e  in  a gene ra l  way, 

p r ime  emphas is  is given to  pass ive  analogs of e las t ic  s t ruc tu ra l  sys tems.  

As cont ras ted  with active e lec t r ica l  analogs consisting of operational ampli-  

f i e r  c i rcu i t s ,  the passive analog is a circui t  consisting of s o m e  combination 

of r e s i s t o r s ,  inductors ,  capaci tors ,  and t r ans fo rmers .  A d i rec t  o r  one-to- 

one correspondence exis ts  between the components i n  the e l ec t r i ca l  network 

and the e lements  of the mechanical sys tem.  

ever ,  depend completely on the definition of the analogy. 

F o r  dynamic simulation of mechanical s t r u c t u r e s ,  two types of 

The exact  re la t ionships ,  how- 

passive c i r cu i t s  a r e  defined: 1) force-cur ren t ,  velocity-voltage analog, 

and 2 )  force-vol tage,  veloci ty-current  analog. Using the c l a s s i c  definition 

of an e l ec t r i ca l  impedance, the f i r s t  analogy equates  e l ec t r i ca l  impedance 

with mechanical mobility whereas  the second analogy equates  e l ec t r i ca l  

impedance with mechanical  impedance. 
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Thus, the fo rce -cu r ren t ,  velocity-voltage analog may  be appropriately 

called a mobility c i rcu i t  o r  mobility analog and the force-vol tage,  velocity- 

cur ren t  analog becomes the mechanical  impedance c i rcu i t  o r  mechanical  

impedance analog. 

and appear  topologically distinct.  

analyses and vibration techniques can be applied to  efficiently analyze the 

electr ical  analogs for  both damped and undamped mechanical  s y s t e m s .  

These two types of c i rcu i t s  a r e  duals of one another  

In e i ther  case ,  the s a m e  bas ic  c i rcu i t  

In this discussion, the fo rce -cu r ren t ,  velocity-voltage pass ive  analog 

F o r  this type of c i rcui t ,  r e s i s t o r s  c o r -  or mobility c i rcu i t  is emphasized.  

respond to viscous damping, the inductors  to  flexibility, the capac i tors  to 

mass ,  and t r a n s f o r m e r s  descr ibe  geometr ic  re la t ionships .  F o r  dis t r ibuted 

s t ruc tures ,  this analog cor responds  mechanically to a lumped p a r a m e t e r  

model and cor responds  mathematical ly  to a finite-difference model. The 

analog impedances a r e  equivalent t o  mechanical  mobili t ies and the analog 

admittances (the rec iproca ls  of the impedances)  a r e  equivalent t o  mechani - 

cal impedances.  

This r epor t  i s  subdivided into five sect ions.  The f i r s t  sect ion uses  

the s ingle-degree-of-freedom s y s t e m  a s  a means to  d iscuss  and i l lus t ra te  

mobility, mechanical  impedance, and operat ional  amplif ier  c i rcu i t s .  In 

addition, frequency response  functions, t r a n s f o r m e r s  and cu r ren t  gener -  

a tors  a r e  reviewed and placed in  context of the e l ec t r i ca l  analog. 

ond sect ion c i tes  the use  of mobility, mechanical  impedance, t r ans fo rmer ,  

and ampl i f ie r  c i rcu i t s  to  s imula te  a s y s t e m  descr ibed  as  se t s  of a lgebraic  

equations. 

degree-of-freedom sys t ems  and an  analog equivalence of modal theory i s  

shown. 

The s e c -  

In addition, mobility c i rcu i t s  a r e  emphasized f o r  two and t h r e e -  

Section th ree  t r e a t s  pass ive  mobili ty analogs of distributed s t ruc tu ra l  

Derivation techniques a r e  emphasized although brief discussions systems.  

of sca le  f ac to r s  and boundary conditions a r e  included. Difference analogs 
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a r e  shown for  the longitudinal vibration of a rod;  the lateral vibration of 

simple,  Timoshenko and curved beams;  a beam on a n  elastic foundation; 

a rec tangular  s h e a r  panel; and the lateral vibration of a rec tangular  plate. 

Section four d i scusses  mobility or iented circui ts  which a r e  useful for prob- 

l e m s  typically found in viscoelast ic i ty ,  heat t r a n s f e r  and fluid flow. 

Section five presents  suriiiiiaiy r e m a r k s  oii p t c n t i a 1  zpplicatinns of, as 

well  as  the distinction between, the analog c i rcu i t s  f o r  s t ruc tu ra l  vibra-  

tions and  the physical sys t ems  typical of section four. 
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1. THE LINEAR OSCILLATOR 

1. 1 MOBILITY ANALOG 
(FORCE-CURRENT, VELOCITY -VOLTAGE ANALOG) 

The der ivat ion of passive analog c i rcu i t s  simulating l inear  mechani-  

c a l  osci l la tors  is  

tions such  as  in Chapters  9 and 10 of Reference 8 o r  Chapter  8 of Reference 

18. 

d i scussed  in  many introductory texts  on mechanical  v ibra-  

However, this effort  is repeated h e r e  for  completeness  of this discussion.  

The equation of motion fo r  a mass-exci ted l inear  osci l la tor  is 

my + c$  + ky = f ( t )  

where m is the mass of the sys t em,  

k the spr ing constant,  f ( t )  the ex terna l  loading applied to  the mass ,  y the 

displacement of the mass f r o m  stat ic  equi l ibr ium, 

and the acce lera t ion  of the mass. Expressed  a s  a function of velocity,  the 

osci l la tor  equation of motion becomes 

c the damping constant of the dashpot ,  

the velocity of the m a s s ,  

m 4 t c; t k 
dt 

F r o m  basic  c i rcu i t  theory,  the  c u r r e n t s  through a capac i tor ,  inductor ,  

and  r e s i s to r s  a r e  shown as  Figure  1. 1. 
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Capaci tor  
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T KiC i T  
Q i 

e 

e 

i 

d e  

C dt  
C i = C -  

i Q L  = ' Ie1 dt 

e 
r i - -  

r R  
- 

Posi t ive cu r ren t s  a r e  shown to  flow into the node and f r o m  the higher  poten- 

t i a l  to  the lower potential where  the a r row symbol i sm denotes a posit ive 

voltage drop  a c r o s s  the c i rcu i t  e lements .  

ponents a r e  represented  by i and the voltage drops a c r o s s  the components 

by e where  the subscr ip t  c r e f e r s  to a capacitor, I t o  a n  inductor,  and r 

to  a r e s i s to r .  The capaci tor  C has  units of f a rads  (fd), the inductor L i n  

henr ies  ( h ) ,  and the r e s i s to r  R i n  ohms (S2). The physics of cu r ren t  flow 

assoc ia ted  with a capaci tor ,  inductor and r e s i s t o r  is defined by  equations 

noted a s  functions of t ime.  

The  c u r r e n t s  through the com- 
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An impedance i s  a quantity defined a s  the rat io  of the Laplace t r a n s -  

forms of the voltage to the cu r ren t .  

mathematically as  a rea l ,  imaginary,  o r  complex number .  F o r  the com-  

ponents in F igure  1. 1 ,  the capacit ive impedance Z , inductive impedance 

Z l ,  and res i s t ive  impedance Z 

It is a function of f requency and appea r s  

C 

appear  as 
r 

where L( ) denotes the Laplace t r a n s f o r m  of the quantity ( ) .  The voltage e 

has  units of volts and the cu r ren t  i has  units of amps .  

Ignoring init ial  conditions, the f irst  t ime der ivat ive and integration 

with r e spec t  to t ime  a r e  represented  by Laplace notation a s  

d 
dt  

s = -  

The capacitive, inductive, and res i s t ive  impedances given i n  Eq. (1. 3 )  

become 
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1 z = -  
c cs 

2 = SL 
P 

Z = R  
r 

where the opera tor  s equals i w  fo r  harmonic s teady s ta te  assumptions.  

By assuming velocity proportional t o  voltage and force  proportional 

to cu r ren t  and noting the f o r m  of the cur ren t  expressions i n  F igure  1.1, the 

t e r m s  of Eq. (1. 2 )  a r e  expressed  in c i rcu i t  nomenclature as 

de 
dt  L C - t Re t I e  dt  = I(t) 

where  e i s  a n  a r b i t r a r y  nodal voltage referenced to ground and I(t) corre- 

sponds to the external  force  f ( t ) .  Comparing the t e r m s  of the above equa- 

tion with (1. 2 ) ,  capacitance corresponds to  m a s s ,  inductance to flexibility 

(the rec iproca l  of the s t i f fness) ,  and the res i s tance  to  the rec iproca l  of vis- 

cous damping. In t e r m s  of mechanical quantities, the  analog impedances a r e  

1 1 z = - = -  
c sm iwm 

s i w  z = - = -  
P k k  

Electr ical ly ,  Eq. (1. 6) denotes an algebraic  s u m  of four  cu r ren t s  

acting at a node which can be easi ly  satisfied by applying Kirchhoff's c u r r e n t  

law. This law s t a t e s  the summation of cur ren ts  acting at a node equals zero .  
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Mechanically, Kirchhoff 's  c u r r e n t  law is noted as  equivalent to  force  equi- 

l ibrium. In funicular f o r m ,  Eq. (1. 7 )  is represented  a s  F igu re  1. 2. 

l 

e 

I 

Figure  1. 2 Funicular  Cur ren t  Diagram for  Mechanical Osci l la tor  

F rom the relat ionships  provided i n  F igu re  1. 1, these  c u r r e n t s  a r e  s imulated 

by  a n  RLC network where  the r e s i s t o r  R,  inductor L, and capaci tor  C a r e  

connected in  para l le l  as  i l lus t ra ted  i n  F igu re  1. 3. 

f(t)  

M ec ha nica 1 Os c i lla t o r Analog Ci rcu i t  

Figure 1. 3 Sketch of the Mechanical Osci l la tor  and the Equivalent 
Mobility Analog Ci rcu i t  
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The topological similarity between the mechanical d i ag ram and the analog 

c i rcu i t  is a cha rac t e r i s t i c  typical of this  type of analog and readi ly  promotes  

a n  intuit ive understanding of the e l ec t r i ca l  circuits.  The applied load f ( t )  

is r ep resen ted  as a c u r r e n t  genera tor  whose cu r ren t  flow is d i rec ted  into 

the node. 

r ep resen ted  as grounded terminals on both the r e s i s t o r  and inductor.  

i ne r t i a l  fo rce  of the mass is shown as  a capacitor referenced to  ground. 

Since Newton's second law of motion requi res  the iner t ia l  force  be re ferenced  

to a n  absolute  o r  iner t ia l  frame of re ference ,  e lec t r ica l  ground thus c o r r e -  

sponds to  a n  iner t ia l  r e f e rence  frame. 

The fixed boundary conditions at the base  of the osci l la tor  a r e  

Tne 

1.2 MECHANICAL IMPEDANCE ANALOG 
(FORCE-VOLTAGE, VELOCITY-CURRENT ANALOG) 

Consider  the development of the force-vol tage,  veloci ty-current  o r  

the mechanical  impedance analog of the mechanical osci l la tor .  F o r  the 

c i r cu i t  e lements  in F igu re  1. 1, the voltage drops a c r o s s  the capac i tor ,  

iiizcLLzA ~ act! res i s tnr  a r e  . f-- -*-- 

e = L / i  dt 
c c  c 

P d i  
e = L -  P d t  

e = R i  
r r 

Assuming the cu r ren t  proportional to  velocity and the voltage proportional 

to  fo rce ,  the osci l la tor  equation of motion appea r s  in the f o r m  
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Comparing the t e r m s  of the above equation with the voltage express ions  of 

(1.  8 ) ,  m a s s  is noted a s  a n  inductance,  the dashpot a s  a r e s i s t o r ,  and the 

fl-exibility a s  a capaci tor .  

Electr ical ly ,  Eq. (1. 9 )  is an  express ion  of Kirchhoff's voltage law; 

that i s ,  the s u m  of the potential d rops  (or  r i s e s )  around a closed loop i s  

zero. 

shown as F igu re  1. 4 

Applying Kirchhoff's voltage law to Eq. (1. 9 )  r e su l t s  in the c i rcu i t  

F igure  1. 4 Mechanical Impedance Pass ive  Analog 
Ci rcu i t  for  a Mechanical Osci l la tor  

where the voltage drops  a c r o s s  the c i rcu i t  e lements  a r e  equivalent to the 

t e r m s  i n  (1. 9).  

enced to ground. 

elements in  the mobility analog, the c i rcu i t  e lements  a r e  connected in 

series. 

The applied loading is shown a s  a voltage genera tor  r e f e r -  

A s  cont ras ted  with the para l le l  a r r angemen t  of c i rcu i t  

1 . 3  IMPEDANCE PROPERTIES, MOBILITY AND FREQUENCY 
RESPONSE FUNCTIONS 

In genera l ,  analog s imulat ions using mechanical  impedance (force-  

voltage, veloci ty-current  assumpt ions  a r e  assoc ia ted  with concepts common 
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t o  loop c i r cu i t s  whereas  simulations using mobility ( force-cur ren t ,  velocity- 

voltage) assumptions a r e  assoc ia ted  with concepts common to nodal c i rcui ts .  

In appearance ,  mobility c i r cu i t s  a r e  distinct f r o m  mechanical  impedance 

c i r cu i t s  but a r e  re la ted  electr ical ly  as dual c i rcu i t s  of one another .  

spect ive of the par t icu lar  analog c i rcu i t  used, the s a m e  c i r cu i t  ana lys i s  

procedures  a r e  applicabie. 

the analog r e s u l t s ,  however,  the analog must  be explicit ly defined. 

I r r e -  

F o r  interpreiirig the iiiechaiiica? equivde!~t  nf 

In this text, the word impedance implies an e l ec t r i ca l  impedance of 

an analog c i rcu i t  defined a s  the ra t io  of the Laplace t r ans fo rms  of the voltage 

to  cu r ren t  both re ferenced  to the s a m e  datum at the s a m e  instant  of t ime.  

Any other  usage wi l l  be  specifically noted. 

velocity-voltage analogy, the impedance is mechanically equivalent t o  

mobility and the c i rcu i t  is called a mobility analog o r  mobility c i rcui t .  If 

the c i rcu i t  is a force-voltage,  velocity-current analogy, the impedance is 

mechanically equivalent to mechanical impedance and the c i rcu i t  is cal led a 

mechanical impedance analog o r  mechanical impedance circui t .  

If the c i r cu i t  i s  a fo rce -cu r ren ty  

The relat ionships  between the propert ies  of a mechanical  sys t em,  the 

mobility analog,  and the mechanical impedance analog a r e  summar ized  i n  

tabular f o r m  as Figure  1. 5. 

mobili ty) is equivalent to a n  impedance i n  a mobili ty analog but equivalent t o  

an  admit tance in a mechanical impedance analog. Thus,  mobility and mech-  

anical  impedance concepts a r e  rec iproca ls  of one another .  

Focusing attention on the mobili ty analogy, mobili ty r u l e s  a re  analogous 

F o r  example,  mechanical  mobility (or  s imply 

with impedance laws and mechanical impedance ru l e s  a r e  analogous with a d -  

mittance laws.  Ci rcu i t  techniques f o r  adding impedances or admit tances  in  

s e r i e s  in  para l le l ,  o r  in  s e r i e s -pa ra l l e l  combination find d i r e c t  application. 

F o r  impedance in  s e r i e s ,  the resul tant  impedance is the s u m  of the individual 

impedances.  

r ec ip roca l  of the s u m  of the individual admittances.  

F o r  impedances in para l le l ,  the resu l tan t  impedance is the 

F o r  a s e r i e s - p a r a l l e l  
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Figure 1 .  5 Bas ic  Relationships Between Mechanical Systems and Their  
Equivalent Analog 

combination of impedances,  the or iginal  analog c i rcu i t  usual ly  can  be  

reduced so  that the preceding two ru l e s  can  be applied to calculate  a r e su l t -  

an t  imp edanc e. 

Considering the mobility analog strictly i n  the sense  of a n  e l ec t r i ca l  

network, the osci l la tor  c i rcu i t  can  be reduced to a n  equivalent impedance 

Z to ground as  shown in  F igu re  1.6.  
0 

f 

Figure  1.6 Reduced Equivalent Circui t  for  the 
Me c ha nica 1 Os c illa tor  
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The equivalent impedance Z 

inductor,  and the capaci tor  conn ected i n  parallel .  F r o m  fundamental  

c i r cu i t  theory,  the resul tant  impedance for the 

1. 3 i s  given as 

is the resultant impedance of the r e s i s to r ,  
0 

RLC network of F igu re  

1 1 1 1 - t- + -  - -  - 

'0 'c 'r 
(1.10) 

where  Z is the capacit ive impedance, Z the res i s t ive  impedance,  and 

Z the inductive impedance. Substituting the impedance relat ionships  given 

by  (1. 5 )  into Eq. (1. 10) produces f o r  harmonic motion 

C r 

P 

1 
1 1 
R W L  

z =  
O - t i ( w c - - )  

(1.11) 

7 . 1 - & - - -  Inser t ing the mechanical equivaients of the r e s i s io r ,  iaprisixor, a i ~  i i i c i u ~ x ~  

into the above provides 

1 - 
W i -  

0- 
11 - c 

2 
z =  - 

0 

n 

(1. 12) 

where  the undamped natural  f requency w 

to the osci l la tor  paramete-rs as 

and damping ra t io  c a r e  re la ted  
n 

- -  C 
w = -  and %an - 

n m  
(1. 13) 
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Electr ical ly ,  the equivalent o r  resul tant  impedance defined by 

Eq. (1 .  10) may be categorical ly  noted a s  

Z = R  t i X  
0 0 0 

(1 .  14)  

where R i s  the res i s tance  of the c i rcu i t  in ohms and ref lects  the 

mechanical damping, while X i s  the reac tance  of the c i rcu i t  in ohms 

and corresponds to  the undamped dynamic proper t ies .  

nitude and phase angle, the equivalent impedance may be expressed  a s  

0 

0 
In t e r m s  of a mag-  

where the absolute magnitude is  

( 1 .  15) . 

(1 .  16)  

and the associated phase angle (defined as the angle by which the voltage 

leads the cu r ren t )  appears  as 

X 
-1  0 

€I= tan - 
R O  

(1. 17)  

The rec iproca l  of an  impedance i s  an  admit tance and l ikewise consis ts  

of a real  and an imaginary  p a r t  wr i t ten  as 

0 0 0 (1. 18) 
Y = G  t i B  

where G is  the r e a l  component of the admit tance noted a s  the conductance 
0 
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and Bo is the imaginary  component of the admit tance noted a s  the suscep-  

tance. 

impedances and admit tances  of the mobility analog with the mechanical 

impedance and mechanical  admit tance a r e  

The admit tance has  units of mhos.  The relationships between the 

(1. 19) 

where  Z is the mechanical  impedance and Y is the mechanical ad- 
m O  m O  

mittance.  

is noted a s  the rec iproca l  of the mechanical impedance. 

The mechanical  admit tance i s  the rat io  of fo rce  to velocity and 

It is somet imes  mathematical ly  convenient to  use  admit tances  r a the r  

than impedances in network analysis.  

pute the equivalent impedance Z 

of the inductor, capacitor,  and r e s i s t o r ,  then take the rec iproca l  of the r e -  

sultant sum.  F r o m  Eq. (1. l l ) , t h e  equivalent admittance Y, of the osci l la tor  

is 

F o r  example, a n  a l ternate  way to  com- 

for the osci l la tor  is to add the admit tances  
0 

. .  
Y 

(1.20) 

and, upon substituting the mechanical  equivalents of the r e s i s t o r ,  capacitor,  

and inductor ,  the admit tance Y becomes 
0 

k 
= c t j(mo - -) 

0 w 
Y (1.21)  

Plotted on log-log paper  as cu rves  of magnitude ve r sus  the excitation 

frequency, the mobility and mechanical  impedance magnitudes for l inear  

osci l la tor  appea r  as Figures  1. 7 a n d , l .  8. Also  shown a r e  the individual 
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Figure  1 . 7  Plots  of the Magnitudes of (Impedance) 
Mobility Functions 
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F i g u r e  1 .  8 P lo t s  of the Magnitudes of (Admittance) 
Mechanical Impedance Functions 
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mechanical impedances for  the osci l la tor  mass, flexibility, and damping. 

Since the mobility analog is used, mobility is equivalent t o  an impedance 

in the analog c i rcu i t  whereas  mechanical  impedance is equivalent t o  a n  ad-  

mittance in the analog c i rcu i t .  (1. 19)  the cu rves  in 

Figures  1 .  7 and 1 ,  8 a r e  noted as rec iproca ls  of one another .  

A S  expressed  by Eq. 

The plots f o r  the individual components appear  as l ines  with constant 

slopes.  

whereas  the inductive impedance plot cor responds  to  a constant st iffness 

l ine.  

the undamped natural  f requency w of the osci l la tor .  The response  
n 

i s  noted predominantly a s  a spr ing a t  f requencies  somewhat below w 

a s  a m a s s  a t  f requencies  >> w , The res i s t ive  impedance is independent 
1 n 

of the frequency with a magnitude - equal to  the max imum value of Z 

Mechanically-, this maximum Z value is  in te rpre ted  as the max imum 

x-elocit\- response of an osci l la tor  excited at the mass by a sinusoidal force ,  

and occurs  when the excitation frequency equals the undamped na tura l  

frequency. 

The capacit ive impedance plot cor responds  to  a constant mass line 

The intersect ion of the capacit ive and inductive impedance l ines  yields 

l z 0 l  
and 

n 

0' C 

0 

For a l inear  sys t em,  the ra t io  of the s teady s t a t e  output r e sponse  to 

This a s imple harmonic input excitation is  a f requency response  function. 

is consistent with the definition of a n  e lec t r ica l  impedance where  s = i w  fo r  

steady s ta te  assumptions.  Thus, fo r  any a r b i t r a r y  l i nea r  sys tem,  many 

such functions exis t  and depend only upon the units of both the output r e -  

sponse and input excitation. 

such quantity and appears  as  a complex valued function of f requency in the 

f o r m  given by Eq. (1. 15). The absolute magnitude H (w) is commonly 

called the gain fac tor  and the assoc ia ted  phase angle 8 is  the phase  factor .  

Expressed i n  t e r m s  of the osci l la tor  p a r a m e t e r s ,  the magnitude and phase  

angle of the velocity to fo rce  frequency response  function Z a r e  shown as 

Eqs.  (1. 2 2 )  and (1. 23).  

F o r  the mobility analog, the impedance is one 

I o  I 

0 
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0 ’  
0 

1 
31 3c. 

1 
31 3c 

I 
31 3c. 
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w - 
0 n 

- 1  
0 = tan 

2 5 2  
0 n 

(1 .22)  

(1. 23) 

I y o  I The1 Z o l  plot in Figure 1.  7 is a log-log plot of Eq. (1. 22) whereas  the 

plot in F igure  1. 8 is a log-log plot of the r ec ip roca l  of Eq. (1. 22). 

F o r  s teady s ta te  conditions, dividing Z by the Laplace opera tor  0 
(s = iw) yields the displacement  to force  frequency r e sponse  function and  

multiplying Z by s yields the acce le ra t ion  to fo rce  frequency response  

function. 

magnitude of the velocity to fo rce  frequency response  function IHO(w)  I a r e  

sketched a s  F igure  1. 9. 

response functions v e r s u s  the frequency r a t io  o / w  

curves show the phase angle var ia t ion with the frequency ra t io  o/o 

undamped natural  frequency (O/O 

and is a maximum fo r  141. A m o r e  complete  discussion of f requency r e -  

sponse function i s  given by P i e r s o l  in  Section 7 of Reference 15. 

0 
The magnitudes of these r e sponse  functions i n  addition to  the 

The top row of cu rves  display the magnitudes of the 

and the lower row of 
n 

At  the 
n 

= l ) ,  the phase angles  a r e  noted a s  90 n 

degrees  and the magnitudes a r e  approximately maxima fo r  1;1 and I:"I. 
The sha rpness  of the frequency r e sponse  cu rves  at the na tura l  f requency 

of the s y s t e m  i s  usual ly  descr ibed  by the Q of the s y s t e m  defined as 

n 
Af (+ 3db) 

f 
Q =  

- 

20 

(1. 24) 



where  f 

frequency (approximately) of the response  function and Af( t3  - db) is the half- 

power bandwidth. 

the response  magnitude at the center  frequency f . 
spond to  amplitude values which a r e  0.707 t imes the magnitude at the center  

frequency. 

is the undamped natural  frequency of the osci l la tor  o r  the center  
n 

This bandwidth is the frequency in te rva l  3 db down f r o m  

The 3 db points c o r r e -  
n 

1 . 4  TORSIONAL SYSTEM 

This s y s t e m  may be considered a s  a torsional osci l la tor  and cons is t s  

of a disk attached to  a rigidly mounted shaft as  shown i n  F igure  1. 10. 

/, ” ’ ’ ’ 1’- 
/ 

i f  

i A- 
\ 

iy I- 

\ 

iy I- 

Figure  1. 10 Disk-shaft  Mechanical System 

The equation of motion f o r  this  s y s t e m  is I 
2 

J -  
d t  
d e + k e = o  

t 2 (1.  25) 

where  J is the mass moment of iner t ia  about the axis of rotation, k the 

tors ional  st iffness (spr ing constant)  of the shaf t ,  8 the angular  d i sp lacement  
t 
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of the disk f r o m  stat ic  equi l ibr ium, and  t the t ime.  Note that  the f o r m  of 

this equation is identical  to a n  undamped l inear  osci l la tor .  Consequently, 

the analog c i rcu i t  f o r  the tors iona l  osci l la tor  appea r s  identical  to  the analog 

circuit  for  a n  undamped l inear  osci l la tor  as sketched in  F igu re  1. 11. 

T 
J 

e 4 - 1 4  - - - e 

‘e 
F igure  1. 11 Pass ive  Analog Ci rcu i t  for  the 

Disk- shaft  Mechanical Sys t em 

This simple L C  c i rcu i t  is the mobility ( force-cur ren t ,  velocity-voltage) 

analog f o r  the tors ional  osci l la tor .  The inductor L cor responds  to the 

torsional flexibility l / k  the capaci tor  C to the polar  mass moment  of 

iner t ia  of the disk J ,  the voltage e to the angular  velocity,  the c u r r e n t  

through the capaci tor  as  the iner t ia l  fo rce ,  and  the c u r r e n t  through the 

inductor as  the shaf t  torque. 

elements a r e  re la ted  as  

e 
t ’  e 

e 

In t e r m s  of impedances,  the tors iona l  c i rcu i t  

(1. 26 )  
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Damping, i f  included, is noted as a r e s i s to r  in para l le l  with the inductor 

of magnitude 

1 Z ( Q = R  = -  
t r e c  

where  c is the viscous damping coefficient fo r  to rs iona l  vibration. 
t 

1 . 5  TRANSFORMERS AND LEVERED SYSTEMS 

Typical problems in mechanical vibrations often include sys t ems  

with rigid,  weightless rods o r  l eve r s .  These l e v e r s  are represented  

e lec t r ica l ly  by idea l  t r ans fo rmers .  

Symbolic ally, 

as shown i n  F igure  

an ideal  multi-winding t r a n s f o r m e r  may be sketched 

1 .12 .  

Pic  to r  ial 
Sketch 

Ci rcu i t  
Schematic  i- 

N1 

'IE3 

Figure  1. 12 Ideal Three-winding Trans fo rmer  

2 3  



The pictor ia l  ske tch  depicts  the t r a n s f o r m e r  as  d i sc re t e  windings 

about a ferromagnet ic  c o r e  where  + is the magnetic flux in  the co re .  

direction of the windings about the c o r e  dictates  the polarity of the t r a n s -  

f o r m e r  and the a s sumed  positive direct ions of c u r r e n t  flow and voltage 

drop a c r o s s  the individual windings a r e  shown. 

is a non-dissipative magnet ic  c i rcu i t  where  the voltages,  c u r r e n t s ,  and 

number of tu rns  i n  the windings a r e  re la ted  as  

The 

The t r a n s f o r m e r  ideally 

n 1 N .  I. = 0 
J J  j = l  

E .  E .+1  

N .  N j + l  
1=- 

J 
j = 1, 2 ,  3 . . .  n 

(1. 2 7 )  

( 1 .  28) 

Eq. (1. 27) is  the law of Biot and Savar t  and in t e r r e l a t e s  the number of 

turns  and cu r ren t  in  each individual winding. Eq. (1.  28 )  i s  F a r r a d a y ' s  

law of e lectro-magnet ic  induction and in t e r r e l a t e s  the voltage and number  

of turns in each individual winding. Since an ideal  t r a n s f o r m e r  consumes 

no power, the product of the voltages and cu r ren t s  for  all windings is  

n n P . = C  E . I . = O  
J j=1  J J  j =  1 

(1. 2 9 )  

Applying the cu r ren t  and voltage laws to  the three-winding t r a n s f o r m e r  

yields 
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I N  t I N  + I N  = O  
1 1  2 2  3 3  

E2 E 3  - --  _ -  - - 
N1 N2 N3 

(1. 30) 

(1. 31) 

Substituting (1. 31) into (1. 3 0 )  provides 

E 1  + E 1  t E I  = O  (1. 32) 
1 1  2 2  3 3  

For ce r t a in  applications,  i t  is convenient to convert  a conventional 

tnro-xvinding t r a n s f o r m e r  c i rcu i t  into a n  equivalent au to- t ransformer .  

Schematically,  two such c i rcu i t s  a r e  shown a s  F igure  1. 13. 

Conventional Two -winding 
Trans  f o r m e  r 

Equivalent 
Auto-transforme r 

F igure  1. 13 Conventional Two-winding Trans fo rmer  and the 
Equivalent Auto-transformer 
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Applied to  the conventional two-winding t r a n s f o r m e r ,  the cu r ren t  and 

voltage l a w s  produce 

I N  + I N  = O  
1 1  2 2  

E2 
(1. 3 3 )  

For  the au to- t ransformer ,  the cu r ren t  and voltage laws yield 

- -  N; J, N l  .I, "P .VI 
- 

2 

( 1 .  34) 
.or .L 

I N-'' t (I t I ) N"' = 0 1 1  1 2 2  

From these equations,  the relat ionships  between the tu rns  for  the two- 

winding and au to - t r ans fo rmers  a r e  

(1.  35)  

It is  common i n  t r a n s f o r m e r  usage to t r ans fe r  a s e r i e s  impedance 

across  the t r a n s f o r m e r  windings. Schematically,  this i s  depicted by 

Figure 1. 14. 
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Original Circui t  Equivalent Circui t  with the 
Trans fe r r ed  Impedance 

F igure  1. 14  Impedance Transfer  Across  a Trans fo rmer  

Using the t r ans fo rmer  voltage laws, the voltages a c r o s s  each of the im- 

pedances are  

I 
A E ( Z 1 )  = El + - 

N2 E 2  

f1. 3 6 )  

.I- N2 
A E  (Z.'') = E + - 

1 2 
N1 

where  A E (  

e lement  specif ied within the parentheses .  

to be the s a m e  in each c i r cu i t  provides 

) denotes the voltage difference a c r o s s  the te rmina ls  of the 

Requiring the power dissipation 

( 1 . 3 7 )  

1 1 

Substituting the voltage difference equations of (1. 3 6 )  into the above yields 
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( 1 .  38) 

4- 1. 

Thus, the t r ans fe r r ed  impedance Z 

Z by the square  of the turns  ra t io .  

is related to the original impedance 1 

1 
Consider the sp r ing -mass - l eve r  mechanical  s y s t e m  depicted a s  

F i g u r e  1. 15. 

f k  

Figure 1.  15 Spr ing-mass- lever  Single Degree-of-freedom Sys tem 

The rod ( lever )  i s  assumed rigid, weight less ,  and of length 1 .  The s y s t e m  

i s  hinged a t  one end, f r e e  a t  the o ther  end with an  attached m a s s  m, and 

has  a res tor ing  torque due to  the e las t ic  spr ing  k located a t  position a .  

Assuming small displacements ,  the l a t e r a l  deflections of the mass 

and spr ing constant y a r e  re la ted as y m  k 

- - - -  - e  'k 
I a 

- yrn 
(1. 39) 

where 8 denotes the angular rotation of the rod. 

hinged support  yields the equation of motion as 

Summing torques about the 
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0. a 2  m e t k ( - )  e = o  
I 

o r  in  reduced fo rm 

m'e't k e =  0 
0 

(1. 40) 

(1. 41) 

2 
where  k is the equivalent spr ing  constant equal to  k (-) . a 

0 P 
The mobility c i rcu i t  o r  force-cur ren t ,  velocity-voltage analog for  the 

sp r ing -mass - l eve r  s y s t e m  is shown as Figure 1. 16. 

. -+ ... L-+ * 

ii2 i 1 
N 

4 1 + + 
... -* 

ii2 f 1 
N 

Figure  1. 16 Pass ive  Analog for the Spr ing-mass- lever  
Sys tem of F igure  1. 15 

* * 
The rigid rod is shown as an au to- t ransformer  with N* = a and N' + N* = I ,  1 1 2 
the spr ing  a s  the inductor L, and the m a s s  a s  the capaci tor  C . The inductor 

is represented  symbolically a s  a r e s i s t o r  to e l iminate  confusion between 

t r ans fo rmer  windings and inductors.  

tional symbol i sm provides no par t icu lar  advantage fo r  this problem, the 

advantages become apparent when interpret ing LC T r a n s f o r m e r  c i r cu i t s  

for  m o r e  complicated s t ruc tu res  such as a beam. 

Although this  depar ture  f r o m  conven- 
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The hinged end condition is s imulated by grounding the c i rcu i t  a t  the 
.& 

negative end of the N’”winding whereas  the f r e e  end is shown as a node with 
1 

an  attached capacitor.  The voltage a c r o s s  the capaci tor  denotes the angular  

velocity at the f r e e  end of the rod and the voltage a c r o s s  the inductor de-  

notes the angular  velocity of the rod a t  position a .  

tween the velocity at the end of the rod and the velocity a t  position a i s  

The relat ionship b e -  

- - - -  y m  - ‘k - 6  
I a 

(1.  42) 

which is obtained by taking the f i rs t  t ime der ivat ive of (1.  39).  

proportional to  velocity, the above express ion  is  identical  in  f o r m  with the 

voltage relationships fo r  the au to - t r ans fo rmer  given by (1 .  34). 

With voltage 

By making use  of the impedance t r ans fe r  procedure  depicted i n  F i g -  

u r e  1. 14, the au to - t r ans fo rmer  can be  eliminated yielding the L C analog 

circui t  of F igu re  1. 17. 
0 

Figure  1. 17 Equivalent Mobility Circui t  f o r  F igure  1 .  16 

F r o m  the impedance t r ans fe r  express ion  given as Eq. (1. 38) ,  the inductors  

in  the c i rcu i t s  of F igure  1. 16 and 1. 17 a r e  re la ted as 

30 
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f 

Since s t i f fness  is inverse ly  proportional to  inductance, Eq. (1. 43) yields 

the relat ionship between the equivalent spring constant k and the or iginal  0 
spr ing constant  k as 

a 2  
ko = (TI k (1.44) 

This equivalent spr ing  is noted to  be the same as that  given by Eq. (1.40). 

1 . 6  ACTIVE ELECTRICAL ANALOGIES 

In cont ras t  to modeling an elast ic  s t ruc ture  using pass ive  components, 

such 2 sys t em can be simulated using a differential analyzer .  The analyzer  

i s  basical ly  a n  assemblage  of pass ive  components and act ive e lec t r ica l  e le-  

ments such a s  mult ipl iers ,  function generators ,  and operational ampl i f ie rs  

which a r e  interconnected to reproduce the equations that  descr ibe  the physi-  

cal  sys tem.  

of ordinary- di i ierent ia i  equatioris wi,ci-e si,rix cr71illj is tk:-2 fc$~---J-n+ i" .... \ .... T r a r i -  . -__ 
able and find wide application in  control sys tem studies  and problems of 

purely mathematical  origin.  

active c i rcu i t s  a r e  nonlinear different ia l  equations, simultaneous solutions 

to se t s  of l i nea r  or nonlinear a lgebraic  equations and t ranscendental  equa- 

tions i n  one var iable .  

ce r t a in  types of par t ia l  differential  equations, t hese  are m o r e  eas i ly  t r ea t ed  

by passive analogs.  

These active c i rcu i t s  a r e  specifically intended to analyze s e t s  

Other topic a r e a s  general ly  associated with 

Although i te ra t ive  methods a r e  avai lable  to deal  with 

The operational amplif ier  is extremely impor tan t  to  active c i rcu i t  

simulation. 

c r ea t e  summing ampl i f ie rs ,  summing in tegra tors ,  and inve r t e r s .  Basical ly ,  

an  ampl i f ie r  i s  an electronic  device where the output-input voltage is re la ted  

by a negative constant fac tor  as shown in F igu re  1. 18. 

Coupled with feedback circuits,  this device is used typically to  
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Figure  1. 18 Bas ic  Operational Amplifier 

The coefficient A is the gain fac tor  and has  a magnitude typically ranging 

f rom 1 0  to  1 0  . A typical feedback c i rcu i t  is sketched as F igure  1. 19 4 8 

1 
e 

2 
e 

3 e 

F igure  1. 19 General  Feedback Circui t  

Z2’ and Z the input voltages 1’ 3; 
where the input impedances a r e  noted as Z 

by el’  e2’ and e3; 

by Zo; and the output voltage of the amplif ier  by e 

the amplif ier  input voltage by e ; 
g 

0 ’  

the feedback impedance 

It i s  des i r ed  to ca l -  

culate the relationships between the output voltage and the input voltages 

assuming no cu r ren t  flow through the amplif ier .  

sponds to an infinite impedance fo r  the bas ic  ampl i f ie r  and guarantees  c u r -  

rent f low through the feedback impedance. Summing cu r ren t s  a t  e accord-  

ing to Kirchhoff’s cu r ren t  law yields 

This assumption c o r r e -  

g 

e - e  e - e  
3 F r , + O g O  R t  

e - e  e - e  
2 g t  

1 

z1 z 2  z 3  z O  
(1 .45)  
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0 
e -- Noting the amplif ier  input voltage is approximately z e r o  as e = - - 0, 

g A  
the above equation reduces to  

zO 
3 + , e  

zO 
e t- 

z O  - e .  = - 
& 3  

(1.46) 

If the same  type of components a r e  used for  the feedback and input 

impedances,  the impedance ra t ios  reduce to constants and Figure  1. 19 

appears  as  a s u m m e r  circui t .  

a s  these a r e  usually much l e s s  expensive than e i ther  prec is ion  capac i tors  

o r  inductors .  If the feedback and input components are different, the  im- 

pedance rat ios  contain the Laplace operators  s o r  l / s  and Figure  1. 19 

becomes a s u m m e r  c i rcu i t  containing differentiators and /o r  in tegra tors .  

A s  an example,  consider  the feedback c i r c u i t  shown as Figure  1. 20. 

This often is done using precis ion r e s i s t o r s  

1 
e 

2 e 

z c 
I t  

*-1 , u  

'i 
R3 

0 e 

F igu re  1. 20 Typical Operational Amplifier-feedback Ci rcu i t  

Substituting the capacit ive and r e s i s t i ve  impedances of (1. 5) into Eq. (1.46) 

yields 

3 1 e t-- 
0 R I C O  s c O  2 R3C0 s 

e 
1 c2 

e 1 -e = - - + -  (1.47) 
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As a function of t ime,  this equation may be  expres sed  a s  

1 
e 2  t - / e 3  dt 

- e  =-/. 1 d t t -  c2 

c O  R3 co 1 
O R I C o  

(1. 48) 

Thus, as  shown by Eq. (1 .  48), this feedback c i rcu i t  is  a combination s u m m e r -  

integrator where the passive components f o r m  constant coefficients. 

By connecting operational amplif ier  and feedback c i rcu i t s  in tandem, 

the i inear  osci l la tor  is represented  by simulating the velocity to force  f r e -  

quency response function. Consider  the following network shown as 

F i g u r e  1. 21 

I 
e l  1 

I 

e '  2 
e l  3 

F igure  1. 21 Active Circui t  fo r  a Linear iOsci l la tor  

K 2 ,  and K denote var iable  potent iometers .  The input-output 1 '  3 
where K 

relationships for the operat ional  ampl i f ie rs  a r e  

e '  = -A e 
1 1 1  

e t  = -A e 
2 2 2  

e '  = -A e 
3 3 3  

3 4  

( 1 . 4 9 )  



where  the p r i m e  superscr ip ts  denote output voltages. 

c i rcu i t  law a t  each of the amplif ier  input nodes provides 

Applying Kirchhoff's 

e - e '  e - K 3 E  e - K  e' 
1 t 1 1 1  + C 1 s  (e l  - e ' )  = 0 

1 
4 R! R 

a t  e * 3 +  
R3 

1 .  

a t  e . e'  = -A e = - A  K e '  
2 '  2 2 2  2 2 1  

e - e' 3 2  
t Czs (e - e ' )  = 0 

3 3  a t  e . 
R2 

3 '  

(1 .  50) 

(1. 51) 

(1. 52) 

Substituting (1. 51) and (1. 52) into Eq. (1. 50) and rear ranging  terms produces 

the voltage rat io  

- K 3  e '  

K a R .A,K, 
4 L f L L  

- K 1 t R C  s t  
R1 4 1 R 3 R Z C 2 s  

1 c- - -  - 

which can be expres sed  in  the form 

K3R1 
- 

K 1 R 4  e '  1 - -  - 
E 

l t  
1 1  

K1 
S F +  

*ZK2 1 

(1.53) 

(1 .  54) 

The velocity to force  frequency response function is given by the 

impedance of ( 1 .  12)  and can be res ta ted  as 
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- 1 I C  - 
1 I C  z =  

0 
m 

1 f - C s [ 1 t -3 1 f Q W [ 1 
n 

(1. 55)  

where the undamped natural  f requency and Q of the osci l la tor  a r e  expressed  

a s  

(1. 56)  

k 
Q = -  

cw n 

By comparing directly the t e r m s  of Eq. (1. 54) and (1. 55),  the relationships 

between the quantities i n  the operational amplif ier  c i rcu i t  and the quantities 

in  the osci l la tor  frequency response  function appear  a s  

-- - Peak Gain 
- -  1 - K3 R1 

K l R 4  

Q R I C l  

K1 

- - -  - 
w n 

(1. 57) 

2 *ZK2 
w =  

R2R3C1C2 

Rather than change the pass ive  components i n  the amplif ier  c i rcu i t s ,  it 

becomes c l ea r  f r o m  (1. 57) that  the potent iometers  a r e  used to conveniently 

adjust the osci l la tor  pa rame te r s .  
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1 . 7  CURRENT GENERATORS 

- 
I 

1 

I 
I 

I 
1 

1 
I 

I 

e?  , I  

In passive element  simulation, the elastic s t ruc tu re  is represented  

e lec t r ica l ly  by some combination of res i s tors ,  inductors,  capaci tors ,  and/ 

o r  t r ans fo rmers .  External  loadings applied to the mechanical sys tem,  how - 
ever ,  a r e  usually represented  by active circui ts  connected to  f o r m  a c u r r e n t  

generator .  

A cur ren t  o r  force  generator  is a device whose output c u r r e n t  is inde- 

pendent of i t s  output voltage. 

a T)-pe-I1 cu r ren t  genera tor  ( see  pg.190, Reference 13)  is represented  

schematical ly  a s  Figure 1. 2 2 .  

One such operational-amplifier c i r cu i t  cal led 

___) 

IO 

e .-a+ 

Figure  1. 22 Amplifier Circui t  Representing a Cur ren t  Generator  

The input-output relationships for the ampl i f ie rs  a r e  

-e ’  = A  e 
1 1 1  

(1. 58) 

- e ‘  = A e 
2 2 2  

and the gains of the amplif iers  (A 

one. 

and A ) a r e  a s sumed  much g r e a t e r  than 1 2 
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Applying Kirchhoff's cu r ren t  l a w  to nodes e and e yields 1 2 

where 

e K e  e '  
4 0 1  

Z 
t - t - t - = o  

3 
e 

z 1  z 4  g 
1 1 ' s  a t  e 0 - 1.- z3 

e '  e t I Z o  
t - +  

5 e6 
Z 1's a t  e '  - t -  

2.- z5 '6 c 
= o  1 0 

e 

z 2  

0 = I  t -  
z O  Rk 

e '  - e e 
2 0  I =  

( 1 .  59)  

(1. 6 0 )  

( 1 .  61) 

Solving the above equations for  the output cu r ren t  Io produces 

( 1 .  6 2 )  

C 
+- - - - - - )e  Z I K  zozc Z 

0 z 2  zozc z 2  ( Z g RkZ2 

Setting Z = Z and assuming the impedances i n  the amplif ier  c i rcu i t  a r e  

r e s i s to r s ,  the output c u r r e n t  becomes  
2 c  

3 8  



I = - -  1 R 1  e + - e 4 ) - 4 q e 5 + q e . )  R 1  R2 R2 

O &3 R4 

(1. 6 3 )  

0 
Setting the voltage gain of the potentiometer a c r o s s  the output voltage e 

equal to 

) l .  64) 

reduces  the e 

output c u r r e n t  a s  

coefficient in the above equation to z e r o  and provides the 
0 

This express ion  is the output cu r ren t  of the cu r ren t -gene ra to r  and is noted 

a s  independent of the output voltage e 

schemat ic  of F igure  1. 22, the cornmon te rmina ls  fo r  both ampl i f ie rs  a r e  

connected to  ground. 

Although not shown explicitly in  the 0' 
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2. MULTI-DEGR EE-OF-FREEDOM SYSTEMS 

In the previous section, a single degree-of-freedom sys tem was used to  

introduce concepts common to (1)  the mobility o r  force-cur ren t ,  velocity-voltage 

analog, (2 )  the mechanical impedance o r  force-vol tage,  ve loc i ty-cur ren t  analog, 

and (3) operational amplif ier  o r  act ive c i rcu i t s .  

will be applied to simulating sys t ems  with two o r  m o r e  degrees-of-freedom. 

In this  section, these  concepts 

2 . 1  ALGEBRAIC SYSTEMS 

Consider, as a n  example,  a mechanical sys tem fully descr ibed  by the 

algebraic equations 

6~ - x - 3~ = -1 

-x t 4 x  - x  = 2 

-3x - x t 5x = 3 

1 2  3 

1 2 3  

1 2  3 

In ma t r ix  form,  these equations appear  as 

where  the unknowns a r e  expressed  a s  the ( x )  column mat r ix ,  the coefficients 

of the equations a r e  the elements  of the squa re  mat r ix ,  and the constants on 

the right-hand side of the equations a r e  given a l so  a s  a column mat r ix .  The 

coupling t e r m s  of the equations a r e  noted a s  the off-diagonal e lements  of the 

squa re  matr ix .  

Interpreting the unknowns a s  nodal voltages,  Kirchhoff 's  cu r ren t  law 

can be applied to yield the res i s t ive  network shown as Figure 2. 1. 
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Figure 2. 1 Nodal Analogy for  the 
Al g e b r a i  c System' 

The coupling t e r m s  a r e  noted as r e s i s t o r s  interconnecting the appropr ia te  

nodes. 

magnitudes a r e  r ec ip roca l s  of the off-diagonal m a t r i x  e lements .  

hand side of Eq. ( 2 . 2 )  is formed with the use  of the ba t t e r i e s  as voltage 

sources  and connected as shown. 

equation of (2.1) is c rea t ed  by grounding the positive t e rmina l  of the half- 

volt bat tery.  

to the x node. 

F o r  this c i rcui t ,  the coupling r e s i s t o r s  f o r m  a delta(A1circuit whose 

The r ight-  

Note that the minus sign (-1) for  the first 

This  can  be eas i ly  checked by applying Kirchhoff 's  cu r ren t  law 

1 
Interpret ing the elements  of the x column m a t r i x  as cur ren t s ,  Kirchhoff 's  

voltape law can be applied to yield the resis t ive network of Figure  2 . 2 .  
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Figure  2.  2 Loop Analogy for  the Algebraic System 

- 
t 

-=- -- - 
i 

The coupling t e r m s  a r e  shown as  r e s i s t o r s  common to two c i rcu i t  loops and 

have magnitudes equal t o  the off-diagonal e lements  in the 3 by 3 matrix of 

Eq. ( 2 .  2) .  The coupling r e s i s t o r s  for  these equations f o r m  a wye network; 

and, as  before ,  ba t t e r i e s  a r e  used a s  the voltage sou rces  to r ep resen t  the 

righthand column m a t r i x  of Eq. (2 .2) .  

To reduce the network of F igu re  2. 1 into a t rac tab le  se r i e s -pa ra l l e l  

combination, the r e s i s t i ve  delta network mus t  be reduced to  a n  equivalent 

wye network. 

a n  equivalent delta network before  the loop analogy can be analyzed using 

ser ies -para l le l  impedance relat ionships .  

a r e  found in mos t  s tandard texts  of c i rcu i t  analysis .  

Conversely,  the wye c i rcu i t  in F igu re  2 . 2  mus t  be reduced to 

These  delta-wye t ransformat ions  

To conveniently s imulate  Eq. (2 .1 )  using operational ampl i f ie rs ,  the 

original equations a r e  first r e s t a t ed  as  
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1 1  i x = - - +  -x + -x 1 6 6 2  2 3  

1 1  1 x = -  + - x  +-x 2 2 4 1  4 3  

3 3  1 x = - + - x  +-x 
3 5 5 1  5 2  

Using r e s i s t o r s  for  the feedback and input elements,  amplif ier  c i rcu i t s  

simulating the equations of (2.3) appear  as Figure  2.3. 

1 R  1 R  

I 

l R  

1.67 S2 

Figure  2. 3 Operational Amplifier Circuits for the Algebraic System 
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The three ampl i f i e r s  with the input and feedback r e s i s t o r s  equal to  unity a r e  

The 3 '  sign r e v e r s e r s  and used to  obtain posit ive values  of x 1 9  x2 9 and x 

coupling t e r m s  a r e  obtained by interconnecting appropr ia te  amplif ier  output 

voltages a s  input voltages to  other  summing ampl i f ie rs .  The constants  

(-1,  2, and 3) a r e  c rea ted  by using ba t te r ies  to  fo rm biased voltage inputs 

to  the summers .  

Defining the unknowns as voltages,  the t r ans fo rmer  voltage law provides  

a multi-winding t r ans fo rmer  analogy shown as  F igure  2 . 4 .  

1 -/+ 
1 

2 
X 

Figure 2. 4 Transformer-vol tage  Analogy fo r  the Algebraic System 
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This analogy consis ts  of t h ree  interconnected four-winding t r ans fo rmers  

w h o s e  turns  rz t ios  a r e  equal numerically to the elements  of the 3 by 3 mat r ix  

appearing in  Eq. (2.  2). 

polarity of the appropriate  t r a n s f o r m e r  windings, and the right-hand column 

matrix of (2. 2) is  siAmu!ated by v ~ l t a o e  0- 0.- -enerators .  

The sign changes a r e  accomplished by revers ing  the 

Defining the unknowns a s  cur  rents ,  the t r ans fo rmer  cu r ren t  law pro-  

duces a multi-m'inding t r ans fo rmer  analogy shown as Figure  2. 5. 

01, X 
1 

f 1 3 i I~ 5 

3 
X 

Figure  2. 5 Trans fo rmer -cu r ren t  Analogy fo r  the Algebraic Sys tem 

This c i rcu i t  is a dual network of F igu re  2.4. 

the windings where  the cu r ren t  genera tors  are applied, the transformer 

c i rcu i t ry  is identical. As cont ras ted  with voltage genera tors ,  the right-hand 

Except for  polar i ty  changes in  
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column matr ix  of (2 .  2) i s  formed by cu r ren t  genera tors  applied a t  the shown 

nodal locations. 

e r a t o r s  and measuring the unknowns f o r  the cur ren t  analogy differ f r o m  those 

used in  the t r ans fo rmer  c i rcu i t s  of Figure 2 .  4. 

Note that the nodal locations for  applying the external  gen- 

2 . 2  DISCRETE MECHANICAL SYSTEMS 

In the previous section, various e lec t r ica l  analogies were  i l lus t ra ted  

simulating a hypothetical mechanical sys t em depicted a s  a s e t  of a lgebraic  

equations. 

s a m e  three algebraic  equations, the f o r m  and appearance of each c i rcu i t  

a r e  totally dependent on the defined relationships between quantities in the 

mathematical  and e lec t r ica l  sys tems.  

Although al l  of the analogies a r e  e lectr ical ly  equivalent to the 

In many instances,  mobility c i rcu i t s  (which is another name for  fo rce -  

cur ren t ,  velocity-voltage analogs) a r e  topologically s imi la r  to mechanical 

sys tems.  

mechanical sys tem where m a s s e s  appear  as  capaci tors ,  spr ings  a s  inductors,  

dashpots a s  r e s i s t o r s ,  and r igid l eve r s  as  t r ans fo rmers .  Restr ic t ing at ten-  

tion to  mobility analogs,  consider by way of i l lustrat ion F igures  2.6 through 2 . 1 0 .  

depicting mechanical sys t ems  and their  equivalent mobility c i rcu i t s .  

Thus,  these analogies can be drawn simply by sketching the 

The nodal voltages r ep resen t  velocit ies a t  the corresponding posit ions 

in the mechanical d iagram and cu r ren t  genera tors  r ep resen t  the ex terna l  

loads acting on the mechanical  system. 

cally as  and cor responds  to  the fixed boundaries.  F o r  the RLC networks,  

the spring is sketched as an  inductor whereas ,  whenever t r ans fo rmers  a r e  

used, the spr ing  i s  sketched a s  a r e s i s to r .  

E lec t r ica l  ground is shown symboli-  
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p L2 

E 
Figure  2. 6 The Vibration Isolator  System and i t s  Equivalent Mobility Analog 

"f" 

r 3  r 

t 

e 

Figure  2. 7 Three-Degree-of -Freedom System and its Equivalent Mobility 
Analog 
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y2 Ri 

R3 

Figure 2. 8 Composite 
Equivalent 

9 

Jj 
J 2  J 3  

2 
C 

3 

c 3  
Three-Degree-of-Freedom System and i ts  
Mobility Analog 

Figure 2 .  9 Composite Torsional System and i t s  Equivalent Mobility Analog 
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' 2  

Figure  2. 10 Levered  Mechanical System and its Equivalent Mobility 
Analog 
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2 . 3  MODAL THEORY AND ITS ANALOG EQUIVALENCE 

A typical and c l a s s i ca l  approach  f o r  calculating the dynamic response  c 

of multi-degree-of-freedom s y s t e m s  is  the u s e  of modal theory.  

is a separation of var iab les  technique and r ep resen t s  the displacements  a t  

various positions on the s t r u c t u r e  as  

This theory 

where  

{ y} 
is a column m a t r i x  denoting the displacement- t ime 

h is tor ies  a t  spat ia l  locations on the s t ruc tu re  

[ $ ]  is a squa re  m a t r i x  consisting of the mode shapes of 

the s t ruc tu re  

(q) 
is a column ma t r ix  denoting displacement- t ime h is tor ies  

of modal osc i l la tors  in  general ized coordinates  

The (y) column ma t r ix  is a function both of space  and t ime whereas  the 

modal matr ix  is  a function only of the space  coordinates  and the general ized 

coordinate column ma t r ix  is a function only of t ime.  

can be thought of as  a t ransformat ion  relat ing the physical coordinates  of the 

mechanical s y s t e m  with the general ized coordinates  defined by modal theory.  

By using the orthogonality proper t ies  of no rma l  modes,  i t  is found that  the 

generalized coordinates  r ep resen t  the output response  f r o m  l inear  osc i l la tors  

whose coefficients a r e  descr ibed  i n  t e r m s  of general ized mass ,  general ized 

stiffness,  general ized damping, and the general ized force .  Each mode shape 

has  a n  associated l inear  osci l la tor  in  general ized coordinates  which is 

appropriately cal led the modal  osci l la tor .  

Using the t r ans fo rmer  voltage l aws ,  a n  e lec t r ica l  representa t ion  of 

Mathematical ly ,  Eq. (2. 4 )  

Eq. (2 .4 )  is sketched as  F igu re  2. 11. 
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F i g u r e  2. 11 Modal Analog for  an N-degree-of-freedom Mechanical System 

The t r ans fo rmer  windings denote the mode shapes  of the s t ruc tu re  and the 

RLC c i r cu i t s  denote the modal oscil lators.  

r e f e r  to the general ized fo rce  (I), the generalized flexibility (L), the gener -  

a l ized mass (C),  and the general ized damping (R). The t r a n s f o r m e r s  shown 

a r e  noted as n-winding t r a n s f o r m e r s  which, depending on the magnitude of n, 

may be imprac t i ca l  to obtain electrically.  

n-degree-of-freedom sys t em m a y  be simulated by the modal analog shown 

above. 

The overbar  i n  the modal c i r cu i t  

However, i n  concept,  any l inear  
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3. DISTRIBUTED STRUCTURAL SYSTEMS 

Contrasted with d i sc re t e  mult i -degr  ee  - of -fr eedom sys tems,  the vibr a - 
tion of a distributed o r  continuous e las t ic  s t ruc tu re  appea r s  mathematical ly  

a s  a partial  different ia l  equation instead of s e t s  of coupled ordinary differential  

equations. This equation is functionally dependent upon both the spat ia l  coor - 

dinates and t ime.  Except for  s imple s t ruc tu ra l  problems,  explicit analytical  

solutions to such equations a r e  nontrivial  mathematical  t a sks  and, in many 

cases ,  a n  understanding of the physical problem is masked  by the shear  p r e -  

ponderance of mathematical  detai ls .  

Consequently, in  engineering prac t ice ,  it is common to study the 

dynamic behavior of a distributed s t ruc tu re  by examining a lumped model of 

the original s t ruc ture .  Mathematically,  m a t r i x  techniques a r e  used to analyze 

the mult i -degree-of-freedom or  lumped model.  Electr ical ly ,  passive mobility 

c i rcui ts  can be used to s imulate  the lumped mode1,and the analysis  can proceed 

using either a passive analog computer o r  digital  computer .  

The c i rcu i t s  to be considered h e r e  a r e  mobility analogs for differential  

segments of a var ie ty  of e las t ic  s t ruc tu res .  

differential s t ruc tu ra l  segments  as  difference segments  and a r e  used to  

synthesize complete e lec t r ica l  models  of s t ruc tura l  sys tems.  

e las t ic  s t ruc tu res ,  the derivation procedures  can be applied to  mos t  physical  

systems descr ibed  by par t ia l  differential  equations. 

These analogs r ep resen t  the 

In addition to 

3 .1  LONGITUDINAL VIBRATION O F  A ROD 

The equation of motion f o r  the longitudinal oscil lation of a thin, uniform, 

homogeneous rod appea r s  as  

2 2 a u  a u  

at2 ax 
AE- = m -  

2 

52 



\There A i s  the c ros s - sec t ion  a r e a ,  E the Young's modulus, m the m a s s  pe r  

unit length, t the t ime ,  u the longitudinal displacement and a function of x 

and t . and x the spat ia l  position along the length of the rod. Expressing the 

spat ia l  der ivat ive as a finite-difference expression yields the original par t ia l  

differential  equation a s  

[ ( u ~ + ~  - un) - (un - u ~ - ~ )  = mAx 'u' Ax 1 n 

.. 
\\,here the double dot notation ( ) denotes the second time derivat ive of ( ). 

The second par t ia l  der ivat ive with respec t  to  x is reduced to  difference f o r m  

a s  

while the f irst  par t ia l  der ivat ive is noted a s  

A,( 
- -  a( I 

ax Ax ( 3 -  4) 

where  Ax i s  the difference length of the rod segment  and A ( ) denotes the 

change of the quantity ( ) with r e spec t  to the x coordinate.  F o r  m o r e  com-  

plete discussions of finite-difference techniques applied to  s t ruc tu res ,  the 

r e a d e r  is d i rec ted  to Section 2. 9 of Reference 4. 

X 

Interpret ing the longitudinal displacements of ( 3 .  2)  as voltages at the 

nodal position n + 1, n, and n - 1, Ohm's law and Kirchhoff's c u r r e n t  law 

a r e  applied to yield the funicular c u r r e n t  d i ag ram shown as  Figure  3.  1. 
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F igure  3. 1 Funicular  Diagram for  a Difference Segment of a Rod 

In a f o r m  consistent with mobility procedures ,  the above cu r ren t s  can be 

expressed a s  functions of velocit ies as 

- AE 
~x ( U n t l  n A X  

- u ) = - J (An t l  AE  - An) dt 

- ( u  AE - u ) ="/(: - 6 ) dt 
AX n n-1 A x  n n-1 

( 3 .  5) 

( 3 . 6 )  

( 3 . 7 )  

The f i r s t  two equations denote cu r ren t  flow through inductors  whereas  the 

l a s t  equation descr ibes  the c u r r e n t  flow of a capaci tor .  

mobility c i rcui t  for  the longitudinal vibration of a difference segment  of rod 

becomes the LC network shown as  F igu re  3. 2. 

The re fo re ,  the 
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1 u -  n -  
d- Ax -- B 

u + $  n 

e 
n+ 1 e 

Mobility Circui t  -Y*Y + 

T n  for a Section of Rod 

Figure  3. 2 Mobility Circui t  for  the Longitudinal Vibration of a Rod 

In te rpre ted  as a lumped model,  the mobility c i r c u i t  desc r ibes  a s y s t e m  

of undamped l inear  osc i l la tors  connected i n  tandem. 

denote the velocit ies a t  the spat ia l  locations and the c u r r e n t  flows denote ex-  

tensional fo rces  and iner t ia l  forces .  

the mechanical p a r a m e t e r s  as 

The nodal voltages 

The c i rcu i t  components are re la ted  to  

C n = m k l n  

where the subscr ip ts  below the ver t ica l  line refer to  the difference segment  

over  which each  of the mechanical quantities a re  to  be evaluated. 

inductor (Ln), the flexibility distribution 

position n t o  n + 1. 

F o r  the nth 

of the rod is integrated f r o m  spat ia l  

F o r  the nth capaci tor  (C ), however ,  the mass dis t r ibut ion n 
of the rod  is integrated f r o m  spat ia l  position n - 2 1 t o  n + 2. 1 
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Although sketched a s  equal d i f fe rence  lengths,  the difference segments  

can  vary in length while the f o r m  of the c i rcu i t  r ema ins  unchanged. 

rod  with nonuniform mass and flexibil i ty proper t ies ,  the fo rm of the mobility 

circuit  likewise does not change. 

by integrating the nonuniform proper t ies  over  the appropr ia te  segmental  lengths 

thus representing the nonuniform rod  by "weighted" uniform sect ions.  

F o r  a 

The c i rcu i t  component values  a r e  calculated 

dx 
4 )I 

3 . 2  LATERAL VIBRATION OF A SIMPLE BEAM 

The section of beam to be t r ea t ed  h e r e  is a s sumed  uniform, homogeneous, 

and to obey small deflection theory.  Although uniform beam proper t ies  a r e  

assumed for the analog derivation, the f o r m  of the analog c i rcu i t  will  be the 

s a m e  f o r  nonuniform proper t ies  

Consider a different ia l  length of a s imple beam in bending ( a l so  common- 

ly called the Bernoulli-Euler beam)  shown a s  F igu re  3.  3 >  

t m d x ' y .  

ax a M  I y + a x  

I av 
ax  V + - d x  

I 
Y 

F igu re  3 .  3 Differential  Segment of a Simple Beam 

where  M denotes the bending moment ,  V the s h e a r ,  f(x, t )  the external  

loading per  unit segmental  length,  and  m y  dx the iner t ia l  loading 
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acting at the center  of gravity of the differential  segment.  

motion for  this beam is given by 

The equation of 

4 2 

i3X at 
a Y  a Y  E1 - + m - = f!x, t) 4 2 (3.1 1) 

where  E i s  Young’s modulus, I the cross-secLlun a r e a  moment of iner t ia  

about the bcnding axis ,  f(x, t )  the external l a t e ra l  loading p e r  unit length, 

m the m a s s  pe r  unit length, t the t ime,  x the position along the length of 

the beam,  and y the l a t e ra l  deflection f r o m  stat ic  equi l ibr ium noted as 

a function cf both the spat ia l  coordinate x and t ime  t . 

The derivation of this fourth-order pa r t i a l  different ia l  equation is 

based upon four, f i r s t -o rde r  differential  express ions  which may  be wri t ten 

a s  

de  
M =  EI- d x  (3.12) 

2 

dt 
(d) m- = = + f (x , t )  2 ax 

where  8 is noted as the slope i n  bending. 

s ions,  these  equations become 

As f i r s t -o rde r  difference expres -  

(3. 13)  
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1 
1 - M  1 1) 

A (MI 1 x n+Z 
= -(M 3 

- ( c )  - v  = -v  n n + l ,  n Ax AX nf ,  , n+Z nf,, n-Z 

f Ax 
n 

where M is the moment  in the b e a m  segment  a t  position n and cor responds  

to moment flow f r o m  position n+z to n-2,  V the s h e a r  fo rce  in the nth 

beam segment and cor responds  to s h e a r  flow f r o m  position n f l  to n,  f the n 
external loading p e r  unit length acting on the nth beam segment ,  the 

m a s s  per unit length for  the difference segment  centered  a t  position n , 0  

the slope of the & a m  segment  a t  position n+$, Ax the difference length of 

a beam segment ,  ( ) the change of the quantity ( ) with r e spec t  to the 

x coordinate. Electr ical ly ,  these  equations a r e  s imulated by the difference 

circuits of Figure 3 .  4. 

n 
1 1 

n 

m 
n 

nfZ 

X 

Defining a composi te  difference gr idwork,  the c i r cu i t s  i n  F igu re  3 .  4 

a r e  combined to yield the genera l  symbolic c i rcu i t  shown as  F igure  3. 5. 

Note that the slope coordinates  a r e  shown at  positions in te rmedia te  to the 

deflection coordinates.  The bending moment  M is defined a s  the moment  

in the beam f r o m  spat ia l  position n+Z to n-z while the s h e a r  force  V is 

defined a s  the shea r  flow i n  the b e a m  f r o m  spat ia l  position n f l  to  n- 1. 

bending moment  cor responds  to  the c u r r e n t  measu red  in the 0 slope c i rcu i t  

and the shea r  flow cor responds  to the c u r r e n t  measu red  in  the y deflection 

circui t .  The t r a n s f o r m e r  windings couple the slope and deflection c i rcu i t s  

and a r e  shown using conventional p r i m a r y  P and secondary S notation. The 

pr imary  winding is located i n  the deflection c i rcu i t  and ,  with the secondary  

winding se t  to unity, cor responds  numerical ly  to  the beam segmental  length 

defined f r o m  spa t ia l  position n to n+l .  

the impedance Z 
n 

Zn(0). Consistent with the posit ive sign convention, the ex terna l  load on the 

nth difference segment  f Ax is  shown a s  a c u r r e n t  genera tor  d i rec ted  into 

the nth node of the deflection circui t .  

n 
1 1 

n 
The 

n n 

The iner t ia l  loading is shown a s  

while the bending flexibility is noted as  the impedance 

n 
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Voltage law for the 
Id ea 1 T r a n s  f o r  n: e r 

- Ynt1 - 'n 
AX e 1 -  n t r  

V A x t M  3 
n ntz, n t +  

1 = 0  - M  n+z, 1 n - r  

K i r  chhoff' s cur  rent 
law applied to the 
slope c i rcu i t  at 
location n t +  

- 3-r -E Ax? 
n , n - i  n - n  

+f A x t  V = o  
n n t l ,  n 

&+ 

. Kirchhoff's current  
law applied to  the 
deflection circuit  a t  
location n 

and 
'nt: 

V Ax 
n 

V 
' n  

' n , n - l * T V n t l ,  n 

/ \ f  n Ax 
m Ax? n n 

Elec t r ica l  Equivalent 
Difference 

Circui t  
0 Circui t  a Difference 

Equation 
Concept 

F igu re  3 . 4  Circui t  Representations for  the 
Difference Equations of a Simple Beam 
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n +  
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I Ax I n 
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i 
1 

n- 1 n n+ 1 

Figure 3 .  5 General  Mobility Circui t  fo r  the La te ra l  Vibration 
of a Simple Beam 

F r o m  the c i rcu i t s  of F igure  3 .  5, consider  the development of a n  analog 

depicting the bending of a s imple  beam due to a n  external  s ta t ic  load. 

tent with the mobility approach,  the requi red  analog is a fo rce -cu r ren t ,  

displacement-voltage c i rcu i t  and differs  f r o m  a mobility analog only in  the 

definition of the mechanical  equivalence of voltage. 

s ta t ic  bending of a beam is appropr ia te ly  cal led a s ta t ic  analog and appea r s  

a s  Figure 3 .  6. 

Cons is -  

Such a c i rcu i t  for  the 
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Figure  3 . 6  Static P a s s i v e  Analog fo r  a Simple Beam in Bending 

Since the re  is no iner t ia l  load, the  iner t ia l  capaci tor  Z does not 
n 

appear .  The bending impedance Z (e) i s  noted as a r e s i s t o r  and all other 

p a r t s  of the c i rcu i t  r ema ins  unchanged. The magnitude of the nth bending 

r e s i s t o r  is obtained by integrating the beam flexibility distribution f r o m  

spat ia l  position n- i to n+$ whereas  the  nth t r a n s f o r m e r  winding r a t io  is 

the length of difference segment  f r o m  position n to n+l.  

n 

1 

The c u r r e n t  

6 1  



generator cor responds  to the applied s ta t ic  loading lumped a t  the deflection 

coordinates. F o r  example,  the magnitude of the loading a t  the nth position 

is found b y  integrating the dis t r ibut ion of the ex terna l  load f r o m  2 - 2  t o  ntz. 
1 1 

F r o m  the genera l  c i rcu i t  of F igu re  3 .  5,  a mobility c i r cu i t  f o r  the 

vibration of a s imple beam is shown as F igure  3 .  7. 
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F i g u r e  3.  7 Mobility Analog fo r  the La te ra l  Vibration of a Simple Beam 
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Consis tent  with mobility re la t ionships ,  the cu r ren t s  cor respond to shea r  force  

and bending moments whereas  the nodal voltages cor respond to slope and 

l a t e ra l  velocit ies.  This analog is equivalent t o  a finite-difference mathematical  

model of the s imple beam and is sometimes cal led a difference mobility c i rcui t .  

The c i rcu i t  components a r e  expressed  in  t e r m s  of the i r  mechanical  equivalents 

where  the flexibility appea r s  as a n  inductor (shown symbolically as  a r e s i s t o r ) ,  

the iner t ia l  loading as a capac i tor ,  and the s lope geometry as  a t r ans fo rmer  

coupling the deflection c i rcu i t  with the  slope circui t .  

bending inductor is obtained by integrating the flexibility dis t r ibut ion f r o m  

position n-2 to ntz. Likewise, the capacitor and c u r r e n t  generator  magni- 

tudes a r e  calculated by integiat ing the mass  and external  loading dis t r ibut ions 

over  the segmental  length between position n-$ and ni$. 

The magnitude of the 

1 1 

Constructed as a mechanical model,  the mobility difference c i r cu i t  

shown in F igure  3.  7 (without the external  loading) is depicted as  F igure  3. 8. 
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F igure  3 .  8 Equivalent Mechanical Model for  the Mobility 
Analog of a Simple Beam Segment 
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Note the topological s imi la r i ty  with the circui t .  

sketched a s  the l eve r s  while the bending inductor L (e )  and iner t ia l  capacitor 

C 

The t r a n s f o r m e r s  a r e  

n 
appear as  the spr ing k (e )  and concentrated mass & I n  respectively.  

n n 
By comparing the s ta t ic  c i rcu i t s  of F igu re  3 .6  with the mobility c i rcu i t  

of F igure  3. 7, the fo rm of the two c i r cu i t s  a r e  identical. 

static c i rcu i t  to the mobility c i rcui t ,  the nodal voltages a r e  f i r s t  assumed a s  

slope and l a t e ra l  velocit ies.  Then, a n  iner t ia l  capaci tor  C is added to the 

nth mode in the deflection c i rcu i t  and the bending r e s i s t o r  R (8) i s  converted 

to a bending inductor Ln(0). Since the  t r a n s f o r m e r s  descr ibe  the slope 

geometry,  they remain  unchanged. In a similar manner ,  mos t  dynamic 

analogs for  s t ruc tu res  can be conveniently der ived f rom their  s ta t ic  c i rcu i t s .  

This conversion r equ i r e s  that the r e s i s t o r s  be changed t o  inductors and 

capacitors added to the appropriate  nodes to account for iner t ia l  loaclLys. 

To convert  the 

n 

n 

The mobility analog shown h e r e  has  the accuracy l imitations of finite- 

difference equations. F o r  accuracy  improvement ,  the use  of higher o r d e r  

difference methods can be used a s  i s  discussed for  b e a m  analysis  by 

Greenwood in  Reference 9. As contrasted to passive analogs, however,  

Greenwood uses active o r  operational amplif ier  c i rcu i t s .  

Other beam circui ts  a l so  a r e  available in  the l i t e r a tu re .  One very 

useful mobility c i rcu i t  i s  the Russel l  b e a m  analogy discussed by Russel l  and 

MacNeal in Reference 17 and again by MacNeal in  Reference 13 .  In cont ras t  

with the mobility c i rcu i t s  emphasized in this discussion, a mechanical i m -  

pedance circui t  (force-voltage,  veloci ty-current  analogy) for  the b e a m  i s  

discussed by Molloy in  Reference 14 as  a four -pole-parameter  network. 
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3 .  3 LATERAL VIBRATION OF A TIMOSHENKO BEAM 

This b e a m  may be descr ibed as the simple b e a m  in bending plus the 

effects of both ro ta ry  iner t ia  and shea r  deformation. 

tion is ignored in a Timoshenko beam, the resultant s t ruc tu re  is called 

the Rayleigh beam. Pictor ia l ly ,  a differential segment  of the Timoshenko 

b e a m  i s  shown as F igure  3 . 9  

If the shear  deforma- 

M( v 

dx 

Figure  3 .  9 Differential Segment of Timoshenko Beam 

where  M denotes the bending moment,  V the s h e a r  force ,  f(x, t) the external  

loading pe r  unit length, mi: dx the l a t e ra l  iner t ia l  fo rce  of the differential  

segment,  and I 9 dx the rotatory iner t ia l  force of the differential  segment.  

The equations of motion for  this  beam may b e  wr i t ten  a s  

.. 
e 

ax 

(3 .  14) 
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where  A is the cross-section a r e a ,  E the  Young's modulus, I the c r o s s -  

sect ion a r e a  moment of iner t ia  about the bending axis ,  I the m a s s  moment 

of inertia about the bending axis ,  G the s h e a r  modulus, K'  a geometr ic  

correction factor noted as the ra t io  of average  s h e a r  s t r e s s  to maximum 

s h e a r  s t r e s s  over a c r o s s  section, m the  m a s s  p e r  unit length, y the total  

beam deflection f r o m  the s ta t ic  equi l ibr ium position, y 

due to  bending, y the beam deflection due to  shea r  deformation, 8 the 

slope due to bending, and ( ) the  second t ime  derivative of the function 

within the parentheses .  

e 

the b e a m  deflection b 

.. S 

The derivation of the equations in  ( 3 .  14) is based upon the following 

f i r s t -  order  differential equations. 

.. av 
ax my = - + f (x, t )  

a M  I 9 = V + -  
.. 

ax e 

de M = EI-  
dx ( 3 .  15)  

The f i r s t  two equations (a, b) a r e  der ived f r o m  fo rce  equilibrium conditions, 

the next three equations (c, d, e )  a r e  applicable s ta tements  f r o m  s imple  b e a m  

theory, the sixth equation ( f )  is obtained f r o m  elementary s t rength of ma te r i a l s ,  

and the last  equation (g)  i s  a geometr ic  definition. 
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A s  finite-difference expressions,  the above equations appear  a s  

The f i r s t  two equations a r e  e lectr ical ly  satisfied by Kirchhoff's cu r ren t  

law, equations c ,  d ,  and 3 a r e  shown in  Figure 3 .  4, and equation f is 

electr ical ly  sat isf ied by Ohm's law. Both the f and g equations a r e  

e/e- -c/o simulated by the c i rcu i t  shown as Figure  3. 10. 

(3.16) 
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F igure 3.  10 Genera l  Difference Ci rcu i t  for  Shear  Deformation 
and Total Deflection 

By applying Ohm's  law where  A ( y  ) denotes the voltage d rop  and V 

cu r ren t ,  the shea r  impedances Zn(V) acount for  the deflection due to shea r  

deformation given by Eq. (3.16-f). 

and A ( y  ), the total  voltage d rop  Ax(yn)  is obtained a s  specified by Eq. ( 3 .  16-g). 

the x s  n 

By adding the posit ive voltage drops  d x ( y s )  

x b  
By expressing the l a t e r a l  and rotational acce lera t ions  a s  well  a s  the 

slope and displacement  coordinates  i n  t e r m s  of angular  and l a t e ra l  velocit ies,  

a passive mobility c i rcu i t  f o r  the lateral vibrat ion of a segment  of Timoshenko 

beam appears  in  F igu re  3 .  11. 

a s imple beam is the addition of (1)  the ro ta tory  iner t ia l  capac i tors  C(e) in  the 

slope circui t  and (2 )  the s h e a r  deformation inductors  L ( V )  and L ' ( V )  in the 

lateral velocity c i rcui t .  Shorting the s h e a r  deformat ion  inductors  f r o m  the 

above c i rcu i t  yields the mobili ty c i rcu i t  for  a Rayleigh beam. 

The difference between this  c i rcu i t  and that  of 

The magnitude 
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Figure 3. 11. Mobility Circuit fo r  the Lateral Vibration of Timoshenko Beam 
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of the rotatory iner t ia l  capacitor f o r  the nth beam segment  C ( e )  is  obtained 

by integrating the distribution of the mass  moment  of iner t ia  f r o m  spat ia l  

position n to  n t l .  

1 
integrating the distribution of - K’AG 
L ( V )  and f r o m  n t$  to  n t l  for 

n 

The magnitudes of L (V) and L’  ( V )  a r e  calculated by 
n n 

f r o m  spat ia l  position n to  n t +  for  

L ’ ( V ) .  n n 

3 . 4  LATERAL VIBRATION O F  A SIMPLE BEAM ON 
AN ELASTIC FOUNDATION 

The s t ruc ture  considered h e r e  is the s imple  o r  Bernoul l i -Euler  beam 

on a distributed, e las t ic  foundation. The r e m a r k s  of this d i scuss ion ,  hoirTever, 

a r e  equally appropriate  to a beam defined by Timoshenko beam theory. 

F o r  a differential  segment  of a beam,  the e las t ic  foundation is a s sumed  

equivalent to an elast ic  spr ing attached below the center  of gravi ty  of the 

beam segment .  The equation of motion is expressed  a s  

4 2 
EI’Y t m a-~ t K y = f(x, t )  

4 2 f ax at 

where the symbols  a r e  those fo r  the s imple beam with the additional t e r m  

K denoting the foundation stiffness p e r  unit length. This  four th-order  

equation is based on four f i r s t -o rde r  differential  equations which a r e  

expressed  in  finite-difference f o r m  as  

f 

AX e 1 =  
n t z  

A ( v ) ~ =  m ~ x y  + K  A X Y  - f AX n n  X n f 

7 0  

(3 .17 )  

(3.18) 



n-  
L 

Except for the t e r m  in the d equation denoting the force due to the elastic 

foundation, these equations a r e  the same a s  those for the simple beam. 

By applying Kirchhoff’s current law a t  the nth node, the foundation force 

i s  incorpordied into the siap!e beam- a ~ i l o g y  and yields the mobility analog 

of Figure 3 .  12. 
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Figure 3 .  12 Mobiliiy Circuit for the Lateral Vibration of a Simple Beam 
on a n  Elastic Foundation 
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The elast ic  foundation is shown electr ical ly  a s  a n  inductor L (K ) to ground 

and is inser ted in para l le l  with the l a t e r a l  iner t ia l  capacitor C . The 

magnitude of the foundation inductor for  the nth segment  is obtained by 

integrating the distribution of the foundation flexibility f rom spat ia l  position 

n--j to  n t i .  

n f  

n 

1 

3 . 5  IN-PLANE VIBRATION O F  A CURVED BEAM 

The s t ruc ture  considered h e r e  is a curved beam loaded externally in 

the radial  direct ion by the force  f (+, t).  The beam theory is essent ia l ly  

that f o r  a curved s imple beam. 

the external  loading, internal  force,  and displacement coordinates  is shown 

a s  Figure 3 .13:  

r 
A differential  section of a curved beam with 

\ 
r 

d b  
r 

a F  
. -  

a +  

\ 

Figure 3. 13 Curved Beam Segment with the Externa l  Loading, Internal 
F o r c e  s and Di s pla c erne nt Coordinate s 
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.) 

where F is the shear  fo rce  acting in the rad ia l  d i rec  ion, F the exten- 

sional or  tangential force  acting in the angular coordinate + direction, 

i (0, t )  the exqeriia! radial  loading per unit a r c  length, M the bending 

moment ,  f ( 9 ,  t) the external  tangential loading pe r  unit a r c  length, m the 

m a s s  per  unit a r c  length, r the rad ius  of the curved segment, u the 

axiai  dispiacement measured in the + diiecticc, -.r the r idial  displacement 

measu red  in the r direction, 8 the slope of the beam, + the angular 

coordinate,  and ( ) the second t ime derivative of the quantity ( ). 

Consistent with the format  of the  previous derivations,  the f i r s t -o rde r  

r + 
r 

0 

..) 

differential  equations for this beam segment a r e  

- -  - -F r 
dM 
d+ r 

(3.19) 

dv 
- = u t € I r  
d4 

Except fo r  notational changes and the radial iner t ia l  force,  these equations 

a r e  found in Reference 12. 

. 
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. 

Expressed as  f i r s t -o rde r  difference equations,  the equations of (3. 19 )  appear  

a s  

A4w41n - - -(F t f r )  A4  
r 4  

( 3 . 2 0 )  

The first th ree  equations a r e  obtained f rom force  equilibrium conditions 

and a r e  simulated electr ical ly  by applying Kirchhoff 's  cu r ren t  law a t  

appropriate  nodes. 

conditions and is simulated electr ical ly  by applying Ohm's  law in the slope 

circuit. 

conditions and a r e  simulated by ideal t r ans fo rmers .  

The fourth equation is determined f rom s t r e s s - s t r a i n  

The l a s t  two equations a r e  obtained f rom strain-displacement  

Defining a conventional difference gridwork, a mobility c i rcu i t  for 

the in-plane vibration of a curved beam is shown as Figure  3. 14. 

magnitude of the bending inductor is calculated by integrating the bending 

flexibility distribution over the a r c  length f rom angular position 4 1 to  

+ 1 . Similar ly ,  the magnitude of the r ad ia l  iner t ia l  capacitor is obtained 

by integrating the mass distribution over  the s a m e  angular positions. 

Setting the S winding equal to unity, the P winding cor responds  to the 

difference a r c  length for  the nth beam segment ,  whereas  the remaining 

t r ans fo rmers  denote the magnitude of the + angle. 

The 

n-2 

n t z  

n n 

74 

I 



4 

A 

n 
P 

/ \+ - 7  

8 Circui t  I o  
G Circui t  I 

P:' 
n 

F+ln 

I I 

f - h A  

9 
\'' 

1 Circui t  

b 1 
I I 

n+ 1 n 

C n = rnrA+ln 
n 

n 

P 

s rA' In 
- =  

P' I 
n n - = -  

S" 
n n 

s 
P' 

F igure  3 .  14 Mobility Analog for  the In-plane Vibration of a Curved Beam 
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Deleting the pr imed t r a n s f o r m e r s  reduces the curved beam c i r cu i t s  to those 

for  the l a t e ra l  vibration of a s imple  beam. 

account f o r  the geometry change necessa ry  to  conver t  a s t ra ight  beam seg-  

ment into a curved beam segment  and is shown to couple the rad ia l  (v) and 

tangential (u) motions. 

Thus,  these  t r a n s f o r m e r s  

By making u s e  of the previous der ivat ions,  the basic  c i rcu i t  of 

Figure 3 .  14 can  be intuitively a l t e r ed  to include additional effects.  

example,  ro ta tory  iner t ia  and shear  deformation a r e  accounted for in the 

Timoshenko beam c i rcu i t  by the iner t ia l  capaci tor  C (e) and the shea r  

inductors L (V)  and L' (V). These effects a r e  included in the curved beam 

by adding a rotatory iner t ia l  capaci tor  C (e) to the slope c i rcu i t  a t  n + + a n d  

adding (in s e r i e s )  the shea r  inductors L ( V )  and L ' ( V )  to  e i ther  s ide of the 

P winding in  the v ci rcui t .  

A s  a n  

n 

n n 

n 

n n 

n 

3 . 6  RECTANGULAR SHEAR P A N E L  

A shea r  panel is  a two-dimensional s t ruc tu re  capable of res i s t ing  

shear  fo rces  applied to i t s  edges.  

shear  panel with the shea r  fo rces ,  the accompanying displacements ,  and 

coordinate direct ions is shown as  F igu re  3.  15. 

u '  a s  the deflection components in  the x direct ion,  v and v '  the  deflection 

components in the y direct ion,  F the s h e a r  fo rce  perpendicular  to  the 

y axis and i n  the x direct ion,  and F the s h e a r  force  perpendicular  to 

the x ax is  and  i n  the y direction. F r o m  fo rce  equi l ibr ium conditions 

A differential  segment  of a rectangular  

This sketch depicts u and 

YX 

XY 

F d x = F  dy 
X Y  YX 
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Y 

I Figure  3. 15 D i f f e r e n t i a l  Segment of a Rectangular Shear  Panel  

F r o m  s t r e s s - s t r a i n  considerations,  the shear flow appea r s  as 

( 3  - 2 2 )  

I whe re  G is the shea r  modulus and h the panel thickness.  A s  f i r s t -o rde r  

differ enc e e quat ions, the above diff e r ent ial equations become 

where  the lower equation desc r ibes  a coupling of mutually perpendicular 

motions . 
Consistent with the mobility approach, the equations of ( 3 . 2 3 )  a r e  

expressed  in t e r m s  of force  and velocity a s  

(3.23) 
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F A x =  
XY 

F Ax 
YX 

(3.24)  

aziining a two-dimensional rectangular  difference gr id ,  these  equations a r e  

simulated in the c i rcu i t  shown as  F igure  3 .  16. 
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F igure  3 .  16 Mobility Circui t  for  a Rectangular Shear  Panel  

The t r ans fo rmer  s e r v e s  to couple the 

inductor L(s )  accounts f o r  the s h e a r  s t r a i n  energy of the panel. 

iner t ia l  forces  of the panel w e r e  included, capac i tors  would be added to 

the and nodes. 

and motions and the s h e a r  

If the 
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3 . 7  LATERAL VIBRATION O F  A FLAT, RECTANGULAR PLATE 

A s  cont ras ted  to a one-dimensional s t ruc ture  such as  a beam, the plate 

considered h e r e  is a two-dimensional elastic s t ruc tu re  a s sumed  as homo- 

geneous,  uniform, and to  obey small deflection theory. Although the plate 

physical  p roper t ies  a r e  a s sumed  uniform,  the c i r cu i t s  to be der ived a r e  

equally appropr ia te  fo r  nonuniform propert ies .  

A differential  sect ion of a la te ra l ly  loaded plate with the accompanying 

moments  and shea r  f o r c e s  is sketched a s  Figure 3 .  17. The force  notation 

shows M as  the bending moments  per  unit length, Q the s h e a r  forces  per  

unit length, and f(x, y,  t )  the external  loading pe r  unit a r e a .  

segment  is of thickness  h and has the differential  dimensions dx and dy. 

F r o m  the content of Chapter 4 i n  Reference 19, the equation of motion for  

the l a t e r a l  vibration of a flat rectangular  plate can  be expres sed  as 

The differential  

( 3 .  25) 

where m is the mass pe r  unit area,  w the l a t e r a l  deflection f r o m  the static 

equilibrium posit ion,  

der ivat ive of the quantity ( ) 

v the Poisson ' s  ratio,  and ( O 0 )  the second t ime 

Eh3 
2 D = plate f lexural  rigidity = 

12(1-  Y ) 

The loading is a s s u m e d  normal  to  the surface and the deflections a r e  small 

in  compar ison  with the plate thickness.  

shear ing  fo rces  Q and Q and the compress ive  s t r e s s  i n  the l a t e r a l  d i r e c -  

t ion due to  the ex terna l  loading a r e  both neglected. 

The effect  on bending due to the 

Y X 
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The equation of motion for the plate is  der ived f r o m  the following 

d i f f e r  ent i a l  e quat ions 

xx 
aM aM 
2,- - Q  = O  aY ax X 

( 3 . 2 6 )  

M -  
YY ax 

dw 0 = -  
x dx 

The  f i r s t  t h ree  equations (a, b, a n d c )  a r e  obtained f r o m  equilibrium con- 

dit ions,  the next t h ree  moment  equations (d, e ,  and f )  f r o m  s t r e s s - s t r a i n  

re lat ionships ,  and the l a s t  two equations ( g  and h) f rom strain-displacement  

definitions. 

In f ini te-difference f o r m  without the spatial  posit ioq notation, the above 

equations appear  as 
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n 
A x  

( 3 . 2 7 )  

Ax(w) 
e =  

X A x  

Expressing the coordinate motions as  velocities, the mobility analog for the 

flat  rectangular plate is obtained by electrically simulating the above equa- 

tions and appears a s  Figures  3.18. 

These circuits a r e  shown a s  three distinct sets: (1) the lateral  

velocity circuit &, ( 2 )  the slope circuit  8 for bending of the x axis, and 

(3)  the slope circuit 8 for  bending of the y axis. The gridwork displays 

four difference rectangular plate segments where the incremental distance 

between consecutive numbers is one-half of a difference length. 

the nodes in the 4 circuit  a r e  defined at  odd-odd coordinate locations, the 

nodes in the slope circuits occur a t  odd-even coordinate positions. 

X 

Y 

Although 
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Figure  3 .  18-a & Circui t  for the Lateral  Vibration of a Flat 
Rectangular P l a t e  
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Figure  3. 18-d Component Values for  the Rectangular P l a t e  Ci rcu i t s  
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The c u r r e n t s  a r e  shown in t e r m s  of their mechanical equivalents and 

correspond to the shea r  f o r c e s  and moments in the difference segments .  

3 The L1 and L inductors account f o r  the s t ra in  energy in  bending, the L 
2 

inductor for  the tors ional  s t r a in  energy,  the capaci tor  for the kinetic energy 

of a plate segment ,  and the tr:,nsformers for the plate geometry.  

F igures  ( 3 .  18) r ep resen t  the fiat piate as a rectangular  array of simple 

beams constrained in  bending by interlocking tors ion members .  The & c i r -  

cuits a r e  those f o r  a two-dimensional rectangular gr idwork of s imple  beams 

i n  bending. The slope c i r cu i t s ,  however, differ f r o m  those corresponding 

to s imple beams in  bending due to  (1) Poisson coupling t e r m s  relating the 

M and M bending moments ,  and (2) the tors ional  r e s t r a in t  due to  the 

IM and M twisting moments.  The Poisson coupling is r ep resen ted  by 

the t r ans fo rmers  number th ree  and four and the tors ional  r e s t r a i n t  by 

t r ans fo rmer  number five. 

.YX YY 

s y YX 

By w a y  of review,  consider  the simulation of the tors ional  res t ra in t .  . 
From the 8 c i rcu i t  i n  F igure  3 .  18-b, the  voltage a c r o s s  the L inductor is 

X 3 

Substituting the mechanical  equivalent of the t r a n s f o r m e r  r a t io  yields 

( 3 .  28) 

(3. 29) 

By adding the equations given as (3. 27-f), the s u m  of the twisting moments  

bec ome s 

-M + M  = D ( l -  "'Jf y x  (6 +& A x  A x y  (6 g d t  ( 3 .  3 0 )  
XY YX AY 
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Consistent with mobility p rocedures ,  the twisting moments  a r e  a s s u m e d  as  

cur ren ts  and the voltage is shown as  the equation of (3. 2 9 ) .  

Ohm's law, the f o r m  of Eq. (3. 30) is that  fo r  c u r r e n t  flow through the 

inductor ,  

By imposing 

- - AY 
L3 D ( l  - Y) ( 3 .  31) 

where L i s  noted a s  the tors ional  inductor.  3 
The mechanical  equivalents of the c i rcu i t  components for  a n  a r b i t r a r y  

plate segment  a r e  shown as  Figure  3. 18-d. The iner t ia l  capac  to r  C,  the 

bending inductors L1 and L 

two, t h ree ,  and four )  a r e  re ferenced  to  the plate segment  centered  a t  the 

grid position 3,  3. The tors iona l  coupling inductor L and the coupling 

t r ans fo rmer  (number 5 )  a r e  re ferenced  to  the c ross -ha tched  plate segment .  

and the bending t r a n s f o r m e r s  (numbers  one, 
2 '  

3 

3 .8  SCALE FACTORS 

T o  u s e  the analog c i r cu i t s  shown h e r e  on a passive element  computer ,  

scale fac tors  often m u s t  be considered to obtain e lec t r ica l  values compatible 

with available sett ing values for  the c i rcu i t  components. 

c i rcui t  components for  the analog c i r cu i t s  a r e  given only in  t e r m s  of their  

mechanical equivalents o r ,  in  other  words ,  the sca le  fac tors  a r e  a s sumed  

as  unity. Scale  f ac to r s ,  therefore ,  a r e  introduced s o  that  the mechanical  

quantities can  be conveniently adjusted to  the available sett ing values on the 

computer. These f ac to r s  a r e  constants  which r e l a t e  the magnitude of the 

quantities i n  the mechanical  s y s t e m  with the corresponding quantity in the 

e lec t r ica l  sys tem.  

A s  shown, the 

Requiring the power in the analog c i rcu i t s  to be equal to the energy  

of the mechanical  s y s t e m  yields the sca l e  factor  re la t ionships  shown as  

Figure 3. 19. 

Section 3. 3 of Reference 13. 

These f ac to r s  a re  der ived  in  a genera l  way by MacNeal i n  

The scaling constants  a r e  normally se lec ted  
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M =  
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I =  

I =  

0 
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mechanical  fo rce  

bending moment 

torque or  twisting moment  

cu r ren t  corresponding to F 

cu r ren t  corresponding to  M 
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0 

+ 

COORDINATE MOTION 
I 

ka e = -  e *  N P ~  e 

0 ka I 
+ = -  

N P  “4 
4 

t = N t  m e 

. 
w = l a t e r a l  nr l inear velocity 

0 = slope velocity 

+ = angular (twisting) velocity 

t = real o r  mechanical  time m 

. 

e = voltage corresponding to & 
W 

e* = voltage corresponding to 8 0 . 
= voltage corresponding to  + “4 

I k, a, P , P , N =  scal ing constants  to  be 
I ’ se lec ted  
I te = e lec t r i ca l  t ime 
I 

Figure  3.19 Genera l  Scale F a c t o r  Relationships fo r  Mobility Arlalogs 

89 



such that the capaci tor  sett ing range f r o m  . 050 microfarads  (pfd) to . 900 

microfarads ,  inductor sett ings f r o m  . 050 henr ies  (h) to 1 henry ,  r e s i s t o r  

settings f r o m  100 ohms ( 5 2 )  to 10,000,000 ohms. The t ime sca l e  factor  N 

i s  selected such that the e lec t r ica l  f requency  range for  the specific problem 

extends f r o m  80 cycles per  second (cps)  to  approximately 800 cycles  pe r  

second. 

Consider a n  application of these sca l e  f ac to r s  to de te rmine  the scaled 

magnitude of the c i rcu i t  components fo r  the l a t e ra l  vibration of a s imple  

beam. The l a t e ra l  iner t ia l  force  of a beam segment  may be expres sed  a s  

F. = m A x -  d? 
n dt  m Y 

(3.32) 

where t 

ity, and t ime sca le  fac tors  f r o m  Figure  3 .  19 into the above express ion  

is noted a s  mechanical t ime.  Substituting the force ,  l a t e ra l  veloc- 
m 

2 de 

If N 2  n dt  
a P m A x -  - - - 

e 
(3.33) 

where  I denotes the cu r ren t  corresponding to  the iner t ia l  force  F. . This  

equation cor responds  in fo rm to cu r ren t  flow through a capaci tor  of magnitude 
Y f 

2 
c = -  m A x  2 n  

a 

N n (3.34) 

In a s imilar  manner ,  the bending inductor and t r a n s f o r m e r  r a t io  a r e  calcu-  

la ted and shown to  equal 

A x  n n 
P 

(3.35) 

(3.36) 
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As a n  additional example,  consider  the calculation of the shea r  defor- 

The relationship mation inductors  L ( V )  in  the Timoshenko beam c i rcu i t s .  

between the s h e a r  f o r c e  and the deformation due to shea r  is given byEq. (3. 16-f) 
n 

as 

(3.37) 

Substituting the s h e a r ,  l a t e ra l  velocity, and time sca l e  fac tors  into the above 

difference express ion  provides 

2 K'AG 
I = a  -A 
V a x  x (3. 38) 

where I denotes the current 'corresponding to the s h e a r  fo rce  V . This 
V n 

equation cor responds  in  f o r m  to cu r ren t  flow through ail inductor of magnitude 

1 Ax 
n 2 K'AG 

a 
L (V) =-  - (3.39) 

Note that  the Ax in the above express ion  is twice the difference length oi 

the shear  inductors  shown in Figure  3.11. Thus, the sum of the inductors 

in the Timoshenko beam c i rcu i t  equals the  magnitude given by Eq. (3.39). 

3.9 BOUNDARY CONDITIONS 

The mobili ty circuits der ived in th is  discussion are e l ec t r i ca l  models  

of difference segments  fo r  specific distributed e las t ic  sys tems.  

c i r cu i t s  are elemental  building blocks t o  be used  in synthesizing complete 

s t ruc tu ra l  sys tems.  In constructing a complete e l ec t r i ca l  model,  the 

boundary conditions of the or iginal  sys tem m u s t  be accounted for  e lectr ical ly .  

Severa l  beam problems will  be considered to  i l lus t ra te  the handling of 

typical boundary conditions. 

These 
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Consider  a s ix-segment  representa t ion  of a cant i lever  beam desc r ibed  

by simple beam theory. 

shown a s  F igure  3. 7. 

loading) in tandem yields the analog c i rcu i t  shown as  F igu re  3.  20.  

The basic  c i rcu i t  for  a segment  of s imple  beam is 

Interconnecting six such  c i r cu i t s  (without the l a t e r a l  

The e lec t r ica l  network is a mobility analog, thus,  the voltages and 

cur ren ts  i n  the slope c i rcu i t  6 correspond to  the slope velocit ies and bend- 

ing moments respectively; 

motion c i rcu i t  correspond to  l a t e r a l  velocit ies and s h e a r  forces  r e spec -  

tively. 

segment  a r e  shown: the capaci tor  C cor responds  to  the lumped m a s s  

mny n n 
rigid l e v e r  labeled a s  A x  . The b e a m  gr id  defines the l a t e ra l  motion nodes 

as even dipits and the slope nodes as odd digits.  

between any two odd o r  any two even positions is  the difference segment  

AX. 

and, the voltages and cu r ren t s  in the l a t e ra l  

The c i rcu i t  components and the i r  mechanical  equivalents for  the nth 

n 
the inductor L (e) to the spr ing  k (e), and the nth t r a n s f o r m e r  to  the 

n 
Therefore ,  the difference 

The boundary conditions for  a cant i lever  beam a r e  expres sed  a s  

(3.40) 

3 a Y(J ,~ ) :Y  
E1 3 = V(1, t) = 0 

ax 

where the fixed o r  buil t- in end condition (x=O) allows no l a t e ra l  deflection 

no r  slope and the f r e e  end ( x = l )  can c a r r y  no s h e a r  fo rce  nor  bending mo-  

ment.  No l a t e r a l  nor  slope motion at the built- in end is  equivalent to 
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Lero voltage a t  the appropr ia te  nodes in  the l a t e ra l  motion and slope 

cuits. 

spatial location corresponding to x = 0. 

the f r e e  end is equivalent to  z e r o  c u r r e n t  flow out of the appropr ia te  nodes 

i n  the $ and 6 c i rcu i t s .  

a t  the spatial  positions shown a s  11 and 12. 

c i r -  

This is accomplished electr ical ly  by grounding the nodes a t  the 

No bending moment  nor s h e a r  a t  

This is done e lec t r ica l ly  by opening the c i rcu i t  

Instead of the fixed boundary conditions a t  x = 0, suppose the cant i lever  

beam was attached to a flexible boundary allowing both l a t e r a l  and  bending 

motions a t  the root. This is accounted for  e lec t r ica l ly  by inser t ing inductors  

L and L to ground in  both the 9 and 0 c i rcu i t s  a t  the x = 0 spat ia l  location 

a s  depicted in  Figure 3 .  21.  

the amount of flexibility i n  the boundaries.  

(shorting them f r o m  the c i rcu i t )  reduces the flexible boundaries t o  a n  infinite 

stiffness o r  the original r igid boundary conditions for  the fixed end of a 

cantilever beam. 

0 Y 
The magnitudes of these  inductors  depend upon 

Setting the inductors  to z e r o  

0 2 

Figure  3. 21 Flexible  Boundary fo r  the Built-in End 
Condition of a Cant i lever  Beam 
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Consider  the s ix-segment  s imulat ion of the par t ia l ly  loaded beam 

s t ruc tu re  shown as Figure 3.22. 

t o  desc r ibe  the s t ruc ture .  

beam with a n  intermediate support  at the center span. 

simulation c?f the end conditions are identical  with those shown in F i g u r e  3.20. 

The in te rmedia te  support  allows no deflection and  r equ i r e s  continuity i n  the 

bending moment  and slope at the mid  span. 

by grounding onlv the 

tion 6. 

and i s  not shown. 

ing lumped a t  nodal positions 8, 10, and 12. 

Simple beam theory  is assumed adequate 

The  boundary conditions are those  of a cantilever 

Thus,  the analog 

These  a r e  s imula ted  e lec t r ica l ly  

c i rcu i t  at the node corresponding to spat ia l  posi-  

The iner t ia l  capaci tor  is shor ted  f r o m  the c i rcu i t  a t  this position 

The c u r r e n t  gene ra to r s  cor respond t o  the ex terna l  load-  

f(x, t)  
Phys ica l  Sys t em 

1 1 I 
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i 
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12 

E lec t r i ca l  Analog 

F igu re  3. 22 Mobility Analog of a P a r t i a l l y  Loaded Distr ibuted B e a m  
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I 

4. OTHER PHYSICAL SYSTEMS 

Pas  s i v c  analog conccpts arc' general ly  applicable fo r  most  any physical 

systcxm dtxscribed a s  a function of both space  and t ime,  i .  e . ,  a par t ia l  

diffe rcntial  equation. Although var ious e l ec t r i ca l  analogs were  considered 

in thti previous sect ions,  mobility c i rcu i t s  w e r e  emphasized for  s imulat ing 

thcs vibration of l inear  e las t ic  s t ruc tu res .  In this section, mobili ty-oriented 

circui ts  a r e  cons1dc.rc.d f o r  physical  s y s t e m s  o ther  than elast ic  s t ruc tu res .  

4.  1 VISCOELASTIC MODEL I 
For  some problems,  the proper t ies  assoc ia ted  with a viscoelast ic  

mater ia l  such a s  solid propellant can be descr ibed  as  a complex s t i f fness  

where  the force-displacement  re la t ionship is 

Expressed in  terms of the velocity, the above equation becomes  I 

io iw wi6 
(4.3) 

w h e r e  fo rce  i s  a s sumed  analogous to  c u r r e n t  and velocity analogous to  voltage. 

By Ohm's  law, Equation (4 .  3) is e lec t r ica l ly  equivalent to  the combined 

impedance of a n  inductor in s e r i e s  with a r e s i s t o r  shown as F i g u r e  4 .1 .  

mechanical equivalents of the inductor and r e s i s t o r  a r e  found by wri t ing the 

impedance for  the RL s e r i e s  combination and compar ing  the resul t ing t e r m s  

with Eq. ( 4 .  3) .  

The  
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L =  
K' (1  + a  ) 

9 

K'(1 t 9 ) 
2 R =  

F igure  4.  1 Mobility Circuit  for  a Viscoelastic Spring 

This  s imple mobility c i rcu i t  can be used in conjunction with known 

analogs of e las t ic  s t ruc tu res  to c rea t e  models of viscoelast ic  s t ruc tures .  

F o r  example,  to c rea t e  an  analog depicting the l a t e ra l  motion of a visco-  

e las t ic  beam, the RL s e r i e s  combination is substi tuted for the bending 

inductor 

of an  e las t ic  beam on a viscoelast ic  foundation, the R L  series combination 

is substituted for  the e las t ic  foundation inductor 

Other viscoelast ic  models  can be c rea ted  by similar substi tutions.  

L (0)  in  F igu re  3 .  7. F o r  an analog model  depicting the vibration 
n 

L (K ) in F igu re  3.12 . 
n f  

4 . 2  HEAT TRANSFER OF A CYLINDRICAL ROD 

Consider the derivation of an  analog circuit  depicting the tempera ture  

cha rac t e r i s t i c s  of a homogeneous cylindrical  section of rod. 

by P ipes  in Section 14 of Reference 16, equating the l o s s  of heat energy in a 

volume of m a t e r i a l  to the heat  flow f rom the volumetr ic  sur face  yields 

A s  discussed 

where  S is the sur face  of the body, T the tempera ture  of the body, V the 

volume of the  body, c the specific heat  of the ma te r i a l ,  E the vectoranormal  

t o  the cyl indrical  surface,  q the vector  denoting the heat  flow, p the  densi ty  

of the body p e r  unit volume, and t the time. 

- 
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Expressing this equation as a volumetr ic  integral  provides  

where Gauss '  t heo rem i s  used to  t r a n s f o r m  the su r face  integral  and v i s  

the dell opera tor  common to vector  analysis .  

Since the volume i s  finite and the in tegra l  i s  continuous, the integrand 

of Eq. (4. 5) can vanish only i f  

dT 
(4 .6)  

In expanded fo rm,  Eq. (4. 6)  appea r s  a s  the diffusion equation fo r  heat  flow 

where the heat  flow is given by 

and k is the t h e r m a l  conductivity. F o r  cyl indrical  coordinates ,  the squa re  

of the dell opera tor  is expres sed  as  

i a  a' 
R~ a e 2  a Z  

v = 1 a [ R E) t - - + -  2 R aR (4. 9 )  

Substituting the above equation into (4. 7 )  yields  the hea t  flow equation fo r  a 

cylindrical  sect ion 

1 a 2 T  a 2 T  

R 2 a e 2  a Z  
9 dT = la  (R 2) t - - t -  2 k dt R a R  
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Assuming the tempera ture  to  be independent of the angular  coordinate 

8, Eq. (4. 10) reduces  to  the two-dimensional heat  flow equation 

(4. 11) 

Expres sed  as  a finite-difference equation for a difference volume of the  

ma te r i a l ,  the two-dimensional heat  flow equation appea r s  as 

dT  
c p r  O r  Az - - - kraz {(Tn+l - T n )  - ( T  - T dt  A r  n n-1 

where  subscr ip ts  below the b races  denote the coordinate  direct ions and 

A0 is a s sumed  as  one radian. 

Defining a r - z  rectangular  gr id ,  a difference RC network siiiiiikitkig 

Eq. (4. 12)  is shown as  Figure  4. 2. Consistent with the mobility approach,  

the t empera tu re  is proportional to voltage and the hea t  flow proportional to 

the cur ren t .  

r e s i s t o r  the the rma l  res i s t iv i ty  in the radial  and axial direct ions.  

o r  cooling source  would be represented  as a c u r r e n t  generator  connected 

to the appropr ia te  t empera tu re  node. 

d i scussed  in  g r e a t e r  depth by Karplus and Soroka in Chapter  10 of Refer-  

ence 11. 

The capac i tor  denotes the heat capaci ty  of the ma te r i a l  and the 

A heat  

S imi la r  analogs for  hea t  t r ans fe r  are 
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Figure 4. 2 Analog Difference Network for Two-dimensional Heat Flow in  
Cylindrical Coordinates 
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4 . 3  THERMAL CHARACTERISTICS OF F L U I D  F L O W  IN A DUCT 

Consider the derivation of a n  e lec t r ica l  analog depicting the thermal  

cha rac t e r i s t i c s  of fluid flow through a duct. 

in  this  representat ion a r e  shown in F igure  4 . 3 .  

The quantit ies to  be considered 

k dx Cross-sec t ion  of Duct W a l l  
4 

--x - Flow - 
c 4 p. 

i \ \  > \ I  

9' q 

Figure 4. 3 Sketch Depicting Thermal  and Fluid Flow Through a 
Section of Duct 

In this sketch, 

the duct wall, q' the heat flow into the fluid f r o m  sources  other  than the 

surrounding body (such a s  in te rna l  f r ic t ion o r  radiation),  and x a spat ia l  

location along the flow path. 

q denotes the heat  flow into the f luid by conduction through 

The differential  equation descr ibing the fluid tempera ture  as a function 

of time and spat ia l  position may be expressed as 

= q t q '  (4.13) 

where  T is the tempera ture  of the fluid, c the specific heat  of the fluid a t  

constant p r e s s u r e ,  t the t ime,  v the velocity of the fluid, and w the mass 

flow r a t e  of the fluid. 

a s sumed  constant over  the duct c ross -sec t ion  at any instant. 

- -  
Quantities such as the t empera tu re  and velocity a r e  

Although such 
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quantities may vary  over  the c ros s - sec t ion ,  mean values a r e  multiplied b y  

the c ross -sec t ion  a r e a  to yield c o r r e c t  values of mass flow and heat  flow 

of the fluid. 

between the fluid and the duct wal l  a p p e a r s  as  

The heat flow q into the fluid due to a t empera tu re  difference 

q = sk(Td - T) (4.14) 

where 

wall, 

ambient surroundings,  and s the p e r i m e t e r  of the duct c ross -sec t ion .  

Substituting (4.14) into (4.13) and express ing  the resul tant  equation in finite- 

difference form yields 

Td is the t empera tu re  of the ambient  surrounding such as  the duct 

k the sur face  conductivity coefficient between the fluid and the 

(4.15) 

An analog c i rcu i t  e lec t r ica l ly  simulating this  difference equation is shown 

a s  Figure 4.4.  

\ 
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. I f  Rd 

1 R =- 
d sMx 

Figure  4 . 4  Difference Circui t  Depicting Heat Flow and 
Fluid Flow Through a Duct 

The c u r r e n t  is analogous to heat  flow, the nodal voltages to the duct 

and fluid t empera tu res ,  the capaci tor  t o  the heat  capaci ty  of the fluid,  the 

r e s i s t o r s  R and R to the the rma l  res is t ivi ty  of the fluid and duct  wal l  

respect ively.  The capi ta l  Q and Q '  symbols denote the hea t  flows by 

conduction and ex terna l  sou rces  f o r  the difference length Ax. 

discuss ion  of th i s  topic area is given by  Dixon i n  Reference 6. 

d 

A thorough 
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5. CONCLUDING REMARKS 

The distinction between s t ruc tu ra l  vibration problems and the topics 

of Section 4 should be  c lear ly  understood. 

s t ruc tures  i s  categorized mathematical ly  as  a type of wave equation whereas  

problems common to heat  t r ans fe r  and fluid flow a r e  categorized mathe-  

matically as diffusion equations. 

equations i s  the o r d e r  of the t ime derivative; the wave equation has  a second 

time derivative while the diffusion equation has  a f i r s t  t ime  derivative.  

Vibration of the s imple r  e las t ic  

The difference between wave and diffusion 

Although the s a m e  genera l  p rocedure  can b e  applied to der ive  passive 

analog circui ts  for  both types of equations, the resul tant  analogs a r e  distinct.  

Analogs for  the vibration of s t ruc tu res  a r e  force-cur ren t ,  velocity-voltage 

finite-difference c i rcu i t s  of the wave equation. These types of c i rcu i t s  a r e  

called mobility analogs. 

inductors and t r a n s f o r m e r s .  If viscous damping is included, r e s i s t o r s  

then a r e  added in  the mobility c i rcu i t s .  The e lec t r ica l  impedance of mobility 

analogs corresponds to  mobility whereas  the e lec t r ica l  admit tance of mobility 

analogs corresponds to mechanical  impedance. 

Elec t r ica l ly  these  c i rcu i t s  cons is t  of capac i tors ,  

Analogs fo r  heat  t r a n s f e r  and fluid flow a r e  ' f low'-current  'dependent- 

The s e variable ' - voltage, finite- difference c i rcu i t s  of the diffusion equation. 

c i rcui ts  a r e  r e f e r r e d  to  as quasi-mobil i ty  analogs; and differ f r o m  mobility 

analogs in the type of e lec t r ica l  components needed and in the mechanical  

interpretat ion of the cu r ren t  and voltage. Cur ren t  is a s sumed  analogous to 

heat  flow and t empera tu re  is  the dependent var iable  f o r  heat  t r a n s f e r  s imu-  

lation. Electr ical ly ,  quasi-mobili ty analogs consis t  chiefly of r e s i s t o r s  

and capaci tors ,  although t r a n s f o r m e r s  may somet imes  be  required.  

Another impor tan t  analogy common to s ta t ic  analyses  of s t r u c t u r e s  

is a force-  cu r ren t ,  displacement  -voltage, finite - difference circui t .  This 
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type of c i r cu i t  is r e f e r r e d  to  as a static-mobili ty analog and consis ts  of 

r e s i s t o r s  and t r ans fo rmers .  Such analogs electr ical ly  descr ibe ,  i n  finite- 
I . difference fo rm,  the s ta t ic  behavior of l inear  e leas t ic  s t ruc tu res  as defined 

by elast ic i ty  theory where  the body fo rces  a r e  neglected. 

der ivat ives  r ema in  unchanged, the equations provided by the elast ic i ty  

theory d i f f e r  i n  f o r m  f r o m  that of a wave equation only in the absence  of 

the t ime  der ivat ive t e rm.  

spat ia l  der ivat ives  fo r  a given s t ruc tu re ,  a n  important  use of static-mobili ty 

analogs is to der ive mobility analogs. 

inductors  and adding capac i tors  to the nodes (to account for  the ine r t i a l  o r  

body fo rces ) ,  s ta t ic  analogs a r e  routinely converted to mobility analogs. 

This procedure  is i l lus t ra ted  only fo r  the simple beam. 

Since the spat ia l  

Thus, s ince  elasticity theory contains all of the 

By simply changing the r e s i s t o r s  t o  

In cont ras t  with the RLC (resis tor- inductor-capaci tor)  o r  RC c i rcu i t s  

common to the s imple r ,  d i sc re t e  physical  sys tems,  t r a n s f o r m e r s  a r e  intro-  

duced to descr ibe  the spat ia l  cha rac t e r i s t i c s  of dis t r ibuted sys tems.  Mathe- 

iiiatica!?i-, t h e s e  sp-tizl cha rac t e r i s t i c s  a r e  defined a s  the differential  

ope ra to r s  of the par t ia l  differential  equations and become increasingly com- 

plex in progress ing  f r o m  rectangular  to polar coordinates.  Synthesizing c i r -  

cui ts  f o r  higher o r d e r  spat ia l  der ivat ives  i s  one of the mos t  difficult t asks  in 

analog derivation. 

The analog derivation procedure  emphasized in th i s  discussion consis ts  

of recognizing c i r cu i t  laws e lec t r ica l ly  equivalent to f i r s t - o r d e r  finite differ-  

ence equations represent ing  the dynamic behavior of the s t ruc tu res .  

equi l ibr ium cor responds  to  Kirchhoff's cu r ren t  laws, s t r e s s - s t r a i n  re lat ion-  

ships  to Ohm's  law, and compatibil i ty expressions to  voltage drop  relat ion-  

ships.  

and F r e b e r g  (Reference 3) equate s t r a i n  energy with e lec t r ica l  power to ob- 

ta in  s ta t ic  analogs of complex s t ruc tu res .  

F o r c e  

In con t r a s t  t o  this procedure ,  Barnoski (Reference 1 )  and Barnoski  
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The mobility analogs of this  discussion a r e  considered as elemental  

s t ruc tura l  building blocks and can  be  used to  synthesize e lec t r ica l  models  

of complete s t ruc tura l  sys t ems .  In general ,  these  e lec t r ica l  models a r e  

se t  up on a passive element  analog computer,and a planned experimental  

p rog ram is  pe r fo rmed  electr ical ly .  

c i rcui ts  is to  use  c i rcu i t  analysis  p rocedures  to  analyze complex s t ruc tu res  

by digital computers .  

e rence  2)  and Walker (Reference 20)  and, although s t i l l  undeveloped, should 

resul t  in  analysis procedures  f o r  complex s t ruc tu ra l  sys t ems  incorporat ing 

the advantages of both analog and digital computers .  

An a l te rna te  application of the analog 

Such approaches a r e  suggested by Barnoski  (Ref- 
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